
171 01UTOKATED ZIRRTIYE SIMULATIOUNmE OOM IN) VAX 1/
EJhS S SNUa.(U)HUESAR oV

FULLERTON Ch OROUM SYSTEN GOU V NLLERTOU IT AL.
IUMMISFIED 9 Y S-TR-7-22fJ42O-U-C- 7P4/12/5 NL

Ihh~hmhE

IIIle

[JL 53

%ii % 1.1.1.
1111pJolZ Z

-% i1 . Vl M --l%

i;LL 4-
ESD-TR-87-228 CDRL 105

Automated Interactive Simulation Model (AISIM)
VAX Version 5.0 User's Manual

VICKY ALLERTON
GLORIA BOICE
SUSAN SWEET

TIM

Hughes Aircraft Company
O) Ground Systems Group
0P.O. Box 3310

Fullerton, CA 92634 0

29 May 1987

oe

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DTIC
ELECTE

IDEC3 11987

Prepared For

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
DEPUTY FOR DEVELOPMENT PLANS AND SUPPORT SYSTEMS
HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731

LEGAL NOTICE

When U. S. Government drawings, specifications or other data ore used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-

plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

PDo not return this copy. Retain or destroy.

*F -41 M

'I-4 4,_

- l.

,V,

%,

i+..., -"p z -:

Unclassi fied
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
ld REPORT SECURITY CLASSIFICATION b RESTRICTIVE MARKINGS

' %I((RIIY (IASSIII(AIIION AtIIIfIRII Y 3 UISIRIBUIION/AVAILAIJILIIY Of HL1'OlH

i Approved for Public Release; Distribution
2b DECLASSIFICATION /DOWNGRADING SCHEDULE Unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)
CDRL 105
1854895-2 ESD-TR-87-228

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Hughes Aircraft Company (If applicable)
Ground Systems Group HQ, Electronic Systems Division (XRSE)

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

P.O. Box 3310 Hanscom AFB
Fullerton, CA 92634 Massachusetts, 01731-5000

Ra NAME Of FujNDING/SPONSc()IN(G 3b OFFICE YMROL 9 PROCIjRiMENr INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

Hanscom AFB PROGRAM PROJECT TASK WORK UNIT

Massachusetts, 01731-5000 ELEMENT NO NO NO ACCESSION NO

11 TITLE (Include Security Classification)

Automated Interactive Simulation Model (AISIM) VAX Version 5.0 User's Manual

12 PERSONAL AUTHOR(S)

VS i r i y A 1 r r n n _ C ~ l r i n R i r p. qNiL q n S1we e t
13a TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) AGE COUNT

Fin] I FROM as/ . TO 5/1l!JS 1987 May 297

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP AISIM

Acceptance Test
Test Procedures

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

This document is the User's Manual for the Hughes developed Automated Interactive
Simulation Model (AISIM) Version 5.0 for VAX 11/780 hosts. This manual provides
the user with a comprehensive guide for using this system to perform high level
simulation of operational and distributed data processing systems.

20 aISTRIIIIJTION/AVAILABILITv OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
b JNCLASSIFIF.D/IJNLIMITED [1 SAME AS RPT F] r)TIC (ISERS Unclassified

22a NAME O REPONSIBLF INDIVIDUAL 22h [IFLPHONE (Include Area Code) 2c OFFICE SYMBOL
Mich Ae] rerrman, Lt, USAFE

' l, 617 377-2716 XRSE

DD FORM 1473,84 MAR 83 APR ed-tion may be used unti exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other edtions are obsolete

i U~NCLASSIFIED

TABLE OF CONTENTS

Section Page

1. INTRODUCTION .. 1-1
1.1 PURPOSE AND SCOPE 1-1
1.2 ORGANIZATION ... 1-1
1.3 DOCUMENTATION CONVENTIONS 1-1
1.4 APPLICABLE DOCUMENTS 1-3

2. AISIM CONCEPTS ... 2-1
2.1 CHARACTERISTICS OF SYSTEMS MODELED BY AISIM 2-1
2.2 MODELING .. 2-2
2.3 DESIGNING MODELS 2-2
2.4 CONSTRUCTING AN AISIM MODEL 2-3

2.4.1 Charting a Paper Model 2-3
2.4.2 Defining the AISIM Model 2-4

2.5 AISIM MODELING ENTITIES2-4

3. AISIM ENTITIES AND OTHER MODELING CONSTRUCTS 3-1
3.1 SCENARIO .. 3-2
3.2 LOAD .. 3-4
3.3 ITEM .. 3-7
3.4 USER DEFINED QUEUES 3-9
3.5 SYSTEM DEFINED QUEUES 3-11

3.5.1 States Associated with Resources 3-11
3.5.2 Cross Reference Sets 3-12

3.6 RESOURCE .. 3-13
3.7 ACTION ... 3-16
3.8 PROCESS ... 3-17
3.9 PRIMITIVES ... 3-21

3.9.1 ACTION 3-24
3.9.2 ALLOC .. 3-26
3.9.3 ASSIGN 3-27
3.9.4 BRANCH 3-29
3.9.5 CALL .. 3-30
3.9.6 COMMENT 3-32
3.9.7 COMPARE 3-33
3.9.8 CREATE 3-35
3.9.9 DEALLOC 3-36
3.9.10 DESTROY 3-37
3.9.11 ENTRY 3-38
3.9.12 EVAL .. 3-39
3.9.13 FILE .. 3-43
3.9.14 FIND .. 344ssion For
3.9.15 LOCK .. 3-45 CRA&I %
3.9.16 LOOP .. 3-46 TAB 0
3.9.17 PREA .. 3-47 .ouncedo
3.9.18 READ .. 3-43 .ficatto
3.9.19 REMOV F....................................... 3-50 -

3.9.20 RESiM 3-51
3.9.21 RESUME .. 3-52 ribution/
3.9.22 SEN D... 3-5

Availabillty Codes
SAvail and/or

iiiDist Specia.l

A
,' ,. --- -

p.. 1 b- VVV7 -_p IS. 11. Cf -f .-. ~ ~FL1~,pJ V~ AA .~vr TZ .IF !', 7W 6M.'WV%~JX,.w . -

3.9.23 SUSPEND 3-54
3.9.24 TEST .. 3-55
3.9.25 TRACE 3-56
3.9.26 UNLOCK ... 3-58
3.9.27 WAIT.. 3-59
3.9.28 WRITE 3-GO

3.10 LEGAL PATH TABLE - NODE - LINK....................... 3-62
3.11 FI S1 i............................... 3-64
3.12 TABLES ... 3-66

3.12.1 Discrete Tables 3-66
3.12.2 Continous Tables 3-66
3.12.3 Alphanumric Tables 3-66

3.13 ATTRIBUTES .. .3-68
3.14 CONSTANTS AND GLOBAL VARIABLES 3-69
3.15 LOCAL VARIABLES 3-71
3.16 ALPHA LITERALS 3-73
3.17 KEYWORDS ... 3-74
3.18 MESSAGE ROUTING SUBMODEL 3-76

4. AISIM SYSTEM OVERVIEW AND SYSTEM INITIALIZATION 4-1
4.1 REACHING THE AISIM READY LEVEL 4-3
4.2 ACCESSING AISIM HELP 4-4

5. AISIM READY LEVEL ... 5-1
A 5.1 INITIATING AN ANIALYSIS SESSION 5-4

5.2 BACKING UP A DATABASE 5-6
5.3 RUNNING AN ANALYZE SESSION VIA BATCH MODE 5-7
5.4 CHANGING THE CURRENT PARAMETERS 5-10
5.5 DELETING PROJECT FILES 5-11
5.6 INITIAfING A DESIGN SESSION 5-12
5.7 VIEWING OUTPUT REPORTS 5-13
5.8 RETURNING TO VAX/VMS READY LEVEL 5-14
5.9 CREATING AND EDITING AN INPUT FILE

FOR THE READ PRIMITIVE 5-15
5.10 CREATING A MODEL LISTNG 5-16
5.11 HARDCOPY OUTPUT OF THE PROCESS FLOWCHARTS 5-18
5.12 OBTAINING HELP FROM THE SYSTEM 5-19
5.13 INITIALIZING A HELP EDITOR SESSION 5-21
5.14 EXERCISING THE LIBRARY FACILITY 5-22
5.15 LISTING THE CURRENT OPTIONS 5-23
5.16 LISTING THE COMMAND PROCEDURE LINES 5-24
5.17 DISABLE THE LISTON OPTION 5-25
5.18 DISABLE AISIM MESSAGES 5-26
5.19 DISABLE MSGOFF FEATURE 5-27
5.20 PRINTING OUTPUT REPORTS 5-28
5.21 INITIATING A REPLOT SESSION 5-29
5.22 RESTORING A DATABASE

(AFTER A CATASTROPHE HAS OCCURRED) ..o.................. 5-30

6. DESIGN USER INTERFACE (DUI) 6-1
6.1 DUI COMMAND SUMMARY 6-5

6.1.1 DUI COMMAND: ARCH 6-6
6.1.2 DUI COMMAND: COPY 6-7
6.1.3 DUI COMMAND: DELETE 6-8

iv

' ''w- ''w' o .- , *',' - ;'-,'""- : '. :* J. *, . N ..% ., :.. .: " . ''4,',.'v v .',: :" " ,'3: P .*- ,' ,. ,%,%:. ,%,' *,.. W,' ,,",_

6.1.4 DUI COMMAND: EDIT 6-9
6.1.5 DUI COMMAND: END 6-10
6.1.6 DUI COMMAND: HELP 6-11
6.1.7 DUI COMMAND: LIST 6-13
6.1.8 DUI COMMAND: SAVE 6-14
6.1.9 DUI COMMAND: UNITS 6-15
6.1.10 Termination of a DUI Session 6-16

6.2 PROCESS EDITOR INTERFACE (PEI) 6-17
6.2.1 Use of the PEI 6-17
6.2.2 PEI COMMAND: BOITCM 6-20
6.2.3 PEI COMMAND: CHANGE 6-21
6.2.4 PEI COMMAND: DELETE 6-22
6.2.5 PEI COMMAND: D 6-23
6.2.6 PEI COMMAND: DRAW 6-24
6.2.7 PEI COMMAND: END 6-25

6.2.8 PEI COMMAND: HELP 6-26

6.2.9 PEI COMMAND: HOLD 6-28

6.2.90 PEI COMMAND: MENU 6-29

6.2.11 PEI COMMAND: NODRAW 6-30

6.2.12 PEI COMMAND: PLACE 6-31
6.2.13 PEI COMMAND: REDRAW 6-32
6.2.14 PEI COMMAND: TOP ..-......................... 6-33
6.2.15 PEI COMMAND: UP 6-34
6.2.16 Terminating a PEI Session 6-35

6.3 ARCHITECTURE DESIGN EDITOR (ADE) 6-36
6.3.1 Concepts For Using ADE 6-36
6.3.2 Use of the ADE 6-38

6.3.3 ADE Symbols 6-40
6.3.4 ADE COMMAND: CHANGE 6-41
6.3.5 ADE COMMAND: CONNECT 6-42
6.3.6 ADE COMMAND: DEFINE 6-44
6.3.7 ADE COMMAND: DELETE 6-47

6.3.8 ADE COMMAND: DRAW 6-49
6.3.9 ADE COMMAND: END 6-49
6.3.10 ADE COMMAND: HELP 6-50
6.3.11 ADE COMMAND: LIST 6-52
6.3.12 ADE COMMAND: MOVE 6-53
6.3.13 ADE COMMAND: NODRAW 6-54
6.3.14 ADE COMMAND: PLACE 6-55
6.3.15 ADE COMMAND: RECON 6-56

6.3.16 ADE COMMAND: REDRAW 6-57
6.3.17 ADE COMMAND: SAVE 6-58
6.3.18 ADE COMMAND: WINDOW 6-59
6.3.19 Termination of an ADE Session 6-60

7. ANALYSIS USER It[rERFACE (AUI) 7-1
7.1 AUI COMMAND: CANBREAK 7-7
7.2 AUI COMMAND: DEFPLOT 7-8
7.3 AUII COI VVI;1: DILI F 7-12

7.4 AUI COMMAND: EDIT 7-13
7.5 AUI COMMAND: END 7-14
7.6 AU[COMMA-ND: LD 7-15
7.7 AU1 COMMAND: G L 7-16
7.7 AUI COMMAND: EP 7-17

7. AU (kM N : HE P 7 1

v

79 UCMN INFRES 7-19

7.1 AUI COMMAND: LISTVA.................................. 7-21
7.1 AUI COMMAND: LISTV 7-21
7.10 AUI COMMAND: LIST..................................... 7-20
7.12 AUI COMMAND: PLV 7-22
7.13 AUI COMMAND: SAVE 7-24
7.14 AUI COM4AND: SETBREA 7-25
7.15 AUI COMMIAND: UNITS 7-26
7.16 TEF4INATION OF AN AUI SESSION 7-27

8. REPLOT USER INTERFACE (RUI) 8-1
8.1 RUI COMMAND: CLEAR 8-3

8.2 RUI COMMAND: DELETE 8-4
8.3 RJI COMMAND: END 8-5
8.4 RUI COMMAND: GET 8-6
8.5 RUI COMMAND: HELP 8-7
8.6 RUI COMMAND: LIST 8-9
8.7 RUI Ct 4MAND: PLOT 8-10
8.8 RUI COMMAND: SAVE 8-11
8.9 RUI COMMAND: UNITS 8-12

9. HARDCOPY USER INTERFACE (HUI) 9-1

10. LIBRARY USER INTERFACE (LUI) 10-1
10.1 LUI COMMAND: CHECKIN 10-4
10.2 LUI COMMAND: CHECKOUT 10-5

10.2.1 CO COMMMAND: DELETE 10-7
10.2.2 CO COMMMAND: END 10-8
10.2.3 CO COMMMAND: EXTRACT 10-9
10.2.4 CO C A: HELP...........................10-10
10.2.5 CO COMMMAND: LIST 10-12

10.3 LUI COMAND: CONVERT 10-13
10.4 LUI COMMAND: HELP................................... 10-14
10.5 LUI COMMAND: MERGEIN 10-16

10.5.1 MI CCOMMND: END 10-13
10.5.2 MI COMMMAND: HELP 10-19
10.5.2 MI COMMMAND: HELP 10-21
10.5.3 MI COMMMAND: INORE........................... 10-21
10.5.4 MI COMMMAND: INFO.......................... 10-22
10.5.5 MI COMMMAND: REAE 10-23
10.5.6 MI CC MMAND: REPLACE 10-24

10.6 WI COMMMAND: MEREOUT.............................. 10-25
10.6.1 MO COMMMAND: END. 10-27
10.6.2 MO CCMMMAND: HELP 10-28
10.6.3 MO COMMMAND: LIST 10-30

10.6.4 MO COMMMAND: SELECT 10-31
11. HELP EDITOR INTERFACE 11-1

11.1 HEI COMMAND SUMMARY 11-2
11.1.1 HET COMMAND: END 11-3
11.1.2 HEI COMMAND: HELP 11-4
11.1.3 HEI COMMAND: UPDATE 11-6

11.2 UPDATE (UPD) ... 1 1-7
11.2.1 Update Cormnnd Sumnary 11-3
11.2.2 UPDATE COMMAND: ADD 11-9
11.2.3 UPDATE COMMAND: CHANGE 11-10

vi

. 7 A. , _

11.2.4 UPDATE COMMAND: DELETE 11-11
11.2.4 UPDATE COMMAND: ELD 11-11
11.2.5 UPDATE COMMAND: END. 11-12
11.2.6 UPDATE COMMAND: HELP 11-13
11.2.7 UPDATE COMMAND: LIST 11-15
11.2.8 UDPATE COMMAND: SAVE 11-16

12. FILE MANAGEMENT USER INTERFACE (FUI) 12-1
12.1 FUI COMMAND SUMMARY 12-3

12.1.1 FUI CCMMAND: DELETE 12-4
12.1.2 FUI COMMAND: END 12-5
12.1.3 FUI COMMAND: HELP 12-6
12.1.4 FUI COMMAND: LIST 12-8
12.1.5 FII COMMAND: LISTOFF 12-9
12.1.6 FUI COMMAND: LISTON. 12-10
12.1.7 FUI COMMAND: PLACE. 12-11
12.1.8 FUI COMMAND: RENUM 12-12

13. AISIM SIMULATION REPORTS 13-1
13.1 INTERACTIVE RESULTS AND HOW TO OBTAIN THEM 13-1
13.2 REPORT RESULTS AND HOW TO OBTAIN THEM 13-2

13.2.1 Constant Report 13-8

13.2.2 Variable Report 13-9
13.2.3 Item Report 13-11
13.2.4 Resource Report 13-12
13.2.5 Action Report 13-14
13.2.6 Queue Report 13-16
13.2.7 Process Report 13-18

13.3 CO'MANDS RELEVANT TO VIEWING OUTPUT REPORTS 13-21
13.3.1 TOP, BOTTOM 13-21
13.3.2 UP, DOWN 13-21
13.3.3 FIND .. 13-21
13.3.4 LIST...................................... 13-22

APPENDIX A OPERATIONAL PROCEDURES AND IMPORTANT INFORMATION A-I

A. 1 IMPORTANCE OF DATABASE BACKUP AND ALLOCATION A-i
A.2 ABNORMAL TERMINATION OF A UI OR AUI SESSION A-i
A.3 AISIM PLOTS .. A-2 ,
A.4 PRODUCING HARDCOPIES OF THE TERMINAL DISPLAY A-3
A.5 RANDOMNESS IN RESULTS A-5"

APPENDIX B AISIM ERRORS .. B-i

APPENDIX C GLOSSARY .. C-i

APPENDIX D MESSAGE ROUTING SUBMODEL D-1

S.

vii

0

LIST OF ILLUSTRATIONS

FIGURE PAGE

2-1 AISIM Entity Relationships 2-4
3-1 Form for the Scenario Entity 3-2
3-2 Form for the Load Entity 3-4
3-3 Form for the Item Entity 3-7
3-4 Form for the Queue Entity 3-10
3-5 Resource States ... 3-12
3-6 Form for the Resource Entity 3-14
3-7 Form for the Action Entity 3-16
3-8 Initial Form for the Process Entity 3-18
3-9 Form for an Item Passing Process 3-18
3-10 Form for Parameter Passing Process 3-19
3-11 Sample Process Diagram 3-20
3-12 Graphical Representations of Process Primitives 3-23
3-13 Form for an ACTION Primitive 3-24
3-14 Form for the ALLOC Primitive 3-26
3-15 Form for the ASSIGN Primitive 3-28
3-16 Form for the BRANCH Primitive 3-29
3-17 Form for the CALL Primitive 3-31
3-18 Form for the COMMENT Primitive 3-32
3-19 Form for the COMPARE Primitive 3-34
3-20 Form for the CREATE Primitive 3-35
3-21 Form for the DEALLOC Primitive 3-36
3-22 Form for the DESTROY Primitive 3-37
3-23 Form for the ENTRY Primitive 3-38
3-24 Form for the EVAL Primitive 3-42

3-25 Form for the FILE Primitive 3-43
3-26 Form for the FIND Primitive 3-44
3-27 Form for the LOCK Primitive 3-45
3-28 Form for the LOOP Primitive 3-46

3-29 Form for the PROB Primitive 3-47
3-30 Form for the READ Primitive 3-48
3-31 Form for the REKVE Primitive 3-50
3-32 Form for the RESET Primitive..............................3-513-33 Form for the RESUME Primitive 3-52
3-34 Form for the SEND Primitive 3-53
3-35 Form for the SUSPEND Primitive 3-54
3-36 Form for the TEST Primitive 3-55
3-37 Form for the TRACE Primitive 3-56
3-38 Form for the UNLOCK Primitive 3-58
3-39 Form for the WAIT Primitive 3-59
3-40 Form for the WRITE Primitive 3-60

3-41 Sample Legal Path Table Entries 3-62
3-42 Form for the File Entity 3-64
3-43 Form for the Table Entity 3-67
3-44 Forms for Constant and Variable Entities 3-69
4-1 AISVM Levels of Operation 4-2
4-2 Help Database Structure 4-4
4-3 Form for the Guideline Help Topic 4-5
4-4 Form for the Note Help Topic 4-6

ix

FIGURE PAGE

4-5 Form for the Procedure Help Topic 4-7
5-1 AISIM READY Level Command Summrary 5-2 e
5-2 Sample Batch Job Submission 5-8
5-3 Sample Batch Job Submission with Plots 5-9
6-1 Terminal Profiles .. 6-2
6-2 Design User Interface Commands 6-4 -
6-3 DUI Command Summary 6-5
6-4 PEI Command Summary 6-18
6-5 Process Display with Menu 6-29
6-6 Viewspace versus Workspace in ADE 6-37
6-7 ADE Command Summary 6-39 '
6-8 Architecture Symbols 6-40 S
6-9 Sample Architecture 6-63
6-10 Sample LPT Generated by Method A 6-63
6-11 Sample LPT Generated by Method B 6-64 'A
6-12 Sample LPT Generated by Method C 6-65
7-1 Form for Text Description 7-1
7-2 Analysis User Interface Commands 7-5

7-3 AUI Command Summary 7-6
7-4 DEFPLOT Form for Items 7-9
7-5 DEFPLOT Forms for Process 7-9
7-6 DEFPL0I' Forms for Queues 7-10
7-7 DEFPL0T Forms for Resources 7-10
7-8 DEFPLOT Form for Variables 7-11 •
7-9 Sample Plot ... 7-11
7-10 Sample Form for Selecting Plots 7-23
7-11 Sample Plot ... 7-23
8-1 RUI Command Summary 8-2

10-1 LUI Command Summary 10-2
10-2 Library Utility Data Flow Diagram 10-3 0
10-3 Checkout Command Sunmary 10-6
10-4 Mergein Command Summary 10-17
10-5 Mergeout Command Summary 10-26
11-1 HEI Command Summary 11-2
11-2 Update Command Summary 11-8
12-1 File Management User Interface 12-2 0
12-2 FUI Coa nd Summary 12-3
13-i Initialization Report - Constants, Files, Tables, and

Global Variables ... 13-3
13-2 Initialization Report - Items and Queues 13-4
13-3 Initialization Report - Resources and Architecture Legal - .

Path Table ... 13-5
13-4 Initialization Report - Actions and Processes 13-6
13-5 Initialization Report - Loads and Scenario 13-7 "
13-6 Constant Report ... 13-3
13-7 Numeric Variable Report 13-9
13-8 Non-numeric Variable Report.............................. 13-10
13-9 Item Report.. 13-i
13-10 Resource Report 13-13
13-11 Action Report .. 13-15
13-12 Queue Report .. 13-17
13-13 Process Report . .. 13-20

r_ e..-d C. T.

% .~ o..

.0<:.

FIGURE PAGE

D-1 Listing of Process MRS D-4
D-2 Listing of Process NODEPROC D-6
D-3 Listing of Process DESTP OC D-8
D-4 Listing of Process CHANPROC D-10

S

'a

N "i

SECTION 1

I NTr OEucT ION

\ 1.1 PURPOSE AND SCOPE a

The Automated Interactive Simulation Modeling System (AISIM) provides the

user with the ability to do high level simulation of complex operational

and distributed data processing systems. The purpose of this manual is to

provide the AISIM user with a ccmprehensive guide for the use of AISIM version

5.0 on a VAX 11/780 computer. .

1.2 ORGANIZATION

This manual is organized to serve as a straightforward reference document for

the AISIM user. Section 1 introduces this document, detailing the

organization of this document, the document conventions and applicable

documents. Section 2 is an overview of the concepts used in modeling and

simulation of systems using AISIM. Section 3 contains a detailed description

of the AISIM modeling constructs. Section 4 describes the interface between N

the AISIM software and the host ccmputer's time sharing system. Sections 5

through 12 present information of the various system user interface levels,

including detailed descriptions of prcrnpts and conands. Section 13 discusses

AISIM simulation results and how to interpret them. Appendix A presents
operational procedures and other information which is useful for the user to
know but not mandatory for using the system. Appendix B lists simulation
error messages with a description of their meaning. Appendix C is a glossary
of AISIM terms. Appendix D contains a detailed description of the message

routing submodel described in section 3.

1. 3 DOCUMKENTAf ION CONVENT IONS

The descriptions of AISIM commands given in this manual use the following

notations to define the syntax and format of the AISIM commands:

I. Coxmands shown in the format below are equivalent:

DESIGN "-

D
I%

The latter is an abbreviation for the former.

2. Required parameters are enclosed in braces:

ient ity-typej

9.-.

I- - "

3. optional parameters are enclosed in brackets:

[NOXLATE]

Default values exist for all optional parameters.

4. The brace and bracket symbols are used only to define the
format. They should never be typed in the actual command
statement.

braces

brackets

5. The symbols listed below should be typed in a cammand
statement exactly as shown in the command statement
definition.

apostrophe '

camma ,

parentheses (

period

6. Words in lower case appearing in a command definition
represent variables for which the user should substitute
specific information in the actual command.

EXAMPLE: If "database" appears in a command definition, the
user should substitute a specific name of a database
(for example, CONTACT) for the variable when the
command is entered on the terminal.

7. All upper case words and letters in a command definition, such
as a command name or a parameter name, must be typed as part of
the command statement.

8. All command names and associated parameters must be separated
fran each other by the appropriate delimiter, as shown in the
command definition. Delimiters are either a comma or a blank
depending on the context. A blank is entered on the terminal by
pressing the space bar at the bottom of the terminal keyboard.

EXAMPLE: BACKUP [PROJEC(database)]

If the optional parameter is used, it must be
separated from the command name BACKUP by a blank (),
i.e., .

BACKUP PROJECI(contact)

1-2

]S

IN A I Vy-V V. 777VT- 17.7 W- %T'- ..

When a camma is to be used as the delimiter, it will be
specified as part of the command definition.

EXAMPLE: DEFPLOT 'entity-type, lentity-namel

In this example the command name DEFPLOT would be
separated from the required parameter [entity-typel by
a blank and the two required parameters would be
separated fran each other by a comia, i.e.,

DEFPLOT R,rescurce

9. The references in this document to specific words that are
AISIM entities will appear with an initial capital. This is to
distinguish the reference to an AISIM specific concept from a
ccmmon interpretation of the word.

EXAMPLE: Process - Occurrences of this refer to the AISIM
entity.

1.4 APPLICABLE DOCUMENTS

The following documents provide additional information relevant to the
operation and use of AISIM:

AISIM Training Manual

AISIM Training Examples Manual

1-3

: "%I

SECTION 2

AISIM CONCEPTS

The Automated Interactive Simulation Modeling System (AISIM) provides a

tool for the analysis of complex systems. The tool is designed for the

operations analyst or engineer as a workbench for investigating the impact

of system alternatives. AISIM provides a graphics language for the

expression of systems, a database for storing a system's design and a

simulation capability for analyzing the system. AISIM is applicable to

design analysis of hypothetical systems and to the operations analysis of

existing systems. 0

AISIM is a computer program that allows for the simulation of complex

systems by a user without the need for the user to do additional

programing. The program can be executed interactively by a user
communicating with a host computer through a terminal, or by submitting sane
AISIM operations to be performed in batch mode. By using the host computer in S

an interactive mode, an AISIM user can use AISIM to obtain timely data to %

support decisions on how a system is to function. - V"

2.1 CHARACTERISTICS OF SYSTEMS MODELED BY AIS IM

AISIM supports the design and analysis of systems having any of the
fol lowing characteristics.

1. Procedural operations -- Processes in the system can be
described by a sequence of steps that describe the logic of every

operation (e.g., operator actions, operating system logic,
applications logic, man-machine interface, real time input
processing).

2. Parallel Processing -- Any number of processes can occur 1. J,%
simultaneously.

3. Shared Resources -- Some processes require resources that are
contended for by other processes (e.g., two I/O requests
contending for a single channel). Queueing is reflected in the ...

degradation of the time required to complete processes suffering
resource contention (e.g., large queues behind bottlenecks in a .-
network).

4. Operational loading -- The operation of the system is a
function both of its internal structure and of the environmental.
pressures on it.

5. Process communication -- Processes transfer data and materials to
other processes in the system (e.g., both message routing and
network control information communication can be easily
represented).

2-1

'-hi V * V. * . ~ %

6. Interconnected network -- Network architectures consisting of
interconnected nodes can be represented in AISIM. System
constructs allow the user to define the routing of messages
through the described architecture. AISIM also allows for the
modeling of systems abstracted fron any particular architecture.

These characteristics are generic to a large clas3 of systems including
military, conputer, and industrial systems.

2.2 MODELING

In scientific and engineering usage, a model is a simplified (or
idealized) representation of a system that is advanced as a basis for
calculations, predictions or further investigation. AISIM modeling fits
comfortably under this general characterization, but AISIM is especially
useful for the modeling of systems which incorporate parallel processing
(simultaneous activity) and networks. AISIM is particularly suited to the
modeling of embedded computer systems for comand, control and
cammunicat ion applications.

There are many applications of simulation modeling in this problem area.
AISIM models are representative, discrete event simulation models used for
predictive operations analysis. What this means is that entities in a
real system are mapped onto AISIM entities that have a very close functional
relationship. AISIM entities respond to simulated conditions much like the
real entities do under actual conditions. This is in contrast to functional
modeling where the real system is described in terms of equations in
differential calculus. The emphasis in representative modeling is on
describing the system.

Generally, determining and clearly describing the system is the first
major obstacle a modeler must confront. If a system is in the design
phase, then no data is available on how it will perform or what the major
bottlenecks will be. For existing systems these characteristics may be
known but the combination of events that cause problems may not be
understood. In both cases, much can be learned from modeling the system.

A key concept to keep in mind is that models are a simplified description
of a system. This implies that same elements of the real system may not
be represented in the model. The challenge in modeling is to represent
all the elements of critical interest to the system dynamics in the model.
This requires sane thought as to the development of the model.

2.3 DESIGNING MODELS

A model should be carefully designed before baing built. The key
activities addressed during the design phase are the following:

1. Understand the Model and Collect Relevant Data -- To model any system
effectively, a modeler has to know scnething about the system.
Building an executable simulation model requires that the system have
an accurate and sufficiently det-ailed description. A modeler must be

2-2

I

~1.. j ~ ~ **~ V *% ~ ~ ~ **.~.* **. *..~**** -- - - - - -- -

Jw.1'y~. MRa (W, MW VW .& W, WigCl~. XVVV i, 3i.j- r' r; i:.y - '* . '4-. -. - v-. w- . i : :: - - -- . - :" L ,

aware of the functions performed in a system which affect the

dynamics of the operation. A modeler must also know the

characteristics of all the elements that perform work, create data,
control processing, interrupt normal operations and produce output.
This data can be obtained fran design specifications, hardware

specifications, previous studies or empirical testing. It is

important to collect good data because that data becomes the
foundation of the model.

2. Determine Model Boundaries -- Systems modeled by AISIM generally
consist of many subsystems. The problems caused by the combination
of subsystem activities are of interest to the analyst. AISIM
provides varying levels of detail in modeling a subsystem. Sometimes
the activity can be viewed as a black box. The flow of control
through this box can simply be represented by a delay. This type of
phenomena is modeled by AISIM with the Action entity. Other times,
the characteristics of a subsystem can be represented by a
mathematical function. AISIM has such a functional capability with
the EVAL Primitive and Table entity. If an activity is more
complicated, it can be described by logic. In this case, AISIM
allows the modeler to go to his own level of detail by building a
Process. Setting the boundaries of an AISIM model is precisely what
the modeler does in deciding which of these constructs will be used
to model the elements of a system. A method of paper modeling
developed for software design is known as "structured design". This
method uses structure charts, hierarchical charts showing calling
sequences, to describe functional processing. This method has been
used successfully with AISIM. An alternate method would be to create
flow charts of the various system functions.

3. Determine Experimental Method -- A model allows an analyst to run
experiments on a system to predict how an operation will behave.
Before any effort is expended in building a model, the desired output of
the simulation runs must be considered. Monitors can be designed to
provide data on the system's operation. Experiments can be designed
to validate the model.

2.4 CONSTRUCTING AN AISIM MODEL

2.4.1 Charting a Paper Model

In building a model, a modeler maps the elements of a system onto the

constructs of the simulation language. To do this, the modeler must be
familiar with the characteristics and relationships of both the simulation
tool and the real-world system. The mapping is not always clear-cut and
usually requires iteration. The modeler charts out what processing takes
place in a system, where resources are allocated, how processes
communicate and where activities initiate. This chart is referred to as a
paper model. It may be derived from an understanding of the system's
functions and a graphical representation of its network. On the paper
model, the modeler names the entities in the system that will be modeled
by AISIM entities - Processes, Resources, Items, Queues, rables, etc.

1'%

2-3

1' LK N,

2.4.2 Defining the AISIM Model

An AISIM model is built by defining AISIM entities to represent system

entities. This is done interactively on the computer. AISIM solicits
relevant data for defining all design entities.

2.5 AISIM MODELING ENTITIES

As mentioned earlier, a model is a description or abstrw-tion of a real or

proposed system. To build a model with the intention
of simulating its

operation, we must describe the model in terms which can be interpreted, "M
and operated upon, by the simulation system. That is, a system can be
modeled using a prose description; but unless it has some systematic -

relation to a computer language, it would be useless as a computer model
because prose is ambiguous. AISIM uses a special set of terms to describe

system structure and operation called AISIM entities. A modeler must

understand the meaning and use of these entities to build successful

models. These entities are briefly discussed below. A detailed

discussion of each of these entities is provided in section 3. Figure 2-1
also provides further insights to the meaning, use, and relationships

between entities and other modeling constructs.
°.

'.,.

E NV I 1GNME N T

SCIENARI0

-.

TRIGGERS AC TION

TAKE
1- O T

IN OfC AN I.

TAE ARCHIyECTuRE , ,.AE I
PLACE (ORF '-

D IE

RIERS IN(I I AL

TAKE PLACE IN, N0 LINK L%

Yt-

." . ', SETS %

L %

C A T E

".%'IAT

2 -4 'C

MAdWLJLA' -, -1 * a .;t 5, ~

0
S.%' W.

Action - An Action entity is used to represent the consumption of time
for any action, activity, decision, etc., that consumes time. Each
Action entity corresponds to an ACTION Primitive in a Process. ihe -
ACTION Primitive is the only one that causes the simulation clock to
be updated.

Constant - A Constant is a model parameter whose value does not change
during a simulation exercise of a model. Constants are used to .

represent parameters that do not vary with time or in response
to the workings of the system being modeled.

File - A File entity corresponds to an external file from which data is,-
read or to which data is written during a simulation run.

Item - An Item is a transient data element and is used to
represent messages (or materials or even physical objects)
flowing through the system.

Load - A Load is used to represent aspects of the world outside the
system that trigger the initiation of Processes. Loads
represent the normal burden, i.e., occasional Process
triggering, on a system..

Primitive - Primitives are logical constructs that represent --
steps in the modeled system's operation. There are 28 different
Primitives each representing a different logical function. A
sequence of Primitives canpose a Process. All of the Primitives are
listed below.

ACTION
ALLOC
ASSIGN
BRANCH
CALL 0

COMPARE
CREATE
DEALLOC
DESTROY
ENTfRY ,.
EVAL . %

FILE '%

F I ND ".

,. .Id
LOCK

READ
R12MOVE

, .' ,'RES!:T
RESUME.

...

2-5 ,""

. .. ~.. .% %

SEND

SUSPENDTEST [

TRACE
UNLOCK
WAIT
WRITE

Process - A Process is a logical description (using Primitives) of
some or all of the operations, decis~ons or activities of the
system being modeled.

Queue - The Queue entity is used to model an ordered holding area for
one or more Items. A Queue may be used to model, for example, a
job queue or a memory buffer. A Queue may be defined with a
maximum size parameter to model such limits as the
maximum number of messages that a buffer can hold before it is
overloaded. Queues bear a default size of infinite.

Resource - The Resource entity is used to model the mechanisms
(people, CPU, communication lines, etc.) necessary to complete a
Process. Resources generally have the property of being shared
amng Processes. Performance of a Process can be degraded due
to contention for Resources.

Scenario - The Scenario entity is used to model the various
environments in which a system must perform. A Scenario .
specifies the number of periods of a simulation run as well as
their length (which is uniform). The Scenario schedules the
initiation of Loads. It can also schedule the initiation of
Processes.

Table - A Table is a user-definable function with up to fifteen pairs 0
of data points. Tables may be defined as either continuous,
discrete or alpha. A continuous Table interpolates linearly
between numeric points. A discrete Table is a step function
connecting numeric points. Alpha Tables are used for
structuring data over non-numeric ranges and domains.

Variable - A Variable is a model parameter whose value can change during a
simulation run, either by setting it equal to a mathematical
expression or through reassignment by the user between stages of
a simulation.

Keywords- The keywords are system-defintc. variables that provide
the user with information about the current state of the <
simulation.

Alpha Literals - Alpha Literals are chtaracter strir'js that are used to
make models nore readable and are used in cunparison with each other *
to determine process execution contr-I.

2-b ,

/ V j

SllI

*1

SECTION 3

AISIM ENTITIES AND OYTHER MODELING CONSTRUCTS

In this section AISIM's entities and other modeling constructs are described
in detail. For each entity, the parameters required to define the entity and
the means by which this data is requested from the user are described.
Included is mention of relationships between the various AISIM entities, where
such mention is deemed helpful.

Note: Whenever entity data is requested via a "form" such as that for the

Scenario entity shown in figure 3-1, any information which is a default will
appear in the form when the form is presented to the user. In the figures
contained in this manual the defaults appear as white words in the black form.

ve

lop

I

3-1

%. ~~'i ~ % VV*~-.....2 . ,

AIAM ' N 'J . 'AM

SCENARIO

3.1 SCENARIO

The Scenario entity is used to represent the various environments in which the
system being modeled must perform. Together with the Load entity it
represents the external stimuli on a modeled system.

In a Scenario, the user defines a collection of Loads and/or Processes,
together with schedule time and triggering priority for each. The Scenario
calls for the initiation of activity over time by activating a Process or Load
at the corresponding scheduled time.

Scenarios are divided into periods whose length and number are chosen by the
user. These periods provide break points at which the user can stop a
simulation to alter a variable or inspect the results up to that point. There
may be up to 14 periods in a given Scenario. The form for the Scenario is
shown in figure 3-1.

SCEICI: 0 m

PEPIOC LETrjTH: UHITS: * OJTF'UT iJIT:,:

DESCFIFTIOti: P

CA LLS :

TPIGGEF SCH TIME UNITS F;IOFITh TIGGEF S.CH TIME JNITS PF'IC FITY

Figure 3-1. Form for the Scenario Entit

run (i.. all tieuilpciiain hruhu h

modw will e cni e d t th n an in w h
0 C

PEaDLNT.Aon ftmei ahsmltdprc %'P

UNITS Figure 3-1. Forms for theicteai PEIDLTysepese.

olowPUTi agI[j dec Tione of the fied n the Snaio foe smlto il e..

U un, (i.e. all time unit specifications throughout the

model will be converted to this unit) and in which all

simulation output will appear unless changed by the user
during the simulation run (see section 7.15).

3-2

W ~P P P P - . .*.$d.~d - -

1

DESCRIPfION: Any user comnt (0 to 53 characters) l

PERIODS: Any characters may be entered in these fields. The
number of fields containing characters determines the I
number of periods in a simulation, i.e., for each of the
14 fields in which an entry is made a period is added -o

the total simulation run. A Scenario can have a maximum
of 14 periods.

TRIGGER: The name of a Process or Load that is to be initiated at
the scheduled time.

SCH TIME: The simulation time, fran the start of the simulation, at
which the the Load or Process specified is to be
initiated.

UNITS: The time units in which SCH TIME is expressed.

The valid entries for UNITS, OUTPUT UNITS and schedule

UNITS are as follows:

Form Entry Meaning
nseconds (ns) - nanoseconds
useconds (us) - microseconds
mseconds (ms) - milliseconds
seconds (s) - seconds
minutes (i) - minutes ,
hours (h) - hours

days (d) - days

The default value which is automatically placed in the
form is SECONDS, but the user can change this default by
using the Design User Interface UNITS command (see
section 6.1.9).

PRIORITY: The priority the triggered Process is to have. Priority

is inverse, priority 1 preempts priority 2. If a Load
name is entered in the trigger field, the corresponding
priority field is ignored.

Operation - A model database may contain more than one Scenario. However,
only one Scenario can be used per simulation run. The Scenario specified will
define the simulation period length, and Loads and Processes to be triggered
by the Scenario. The total simulation time is the product of the number of
periods and the period length. The number of periods also effects the
collection of plot data points. (see appendix A.3)

Constants may be used to define PERIOD LENGTH, SCH TIME, and PRIORITY in order
to parameterize a model.

Scenario entities are entered into a model by using the Design User Interface
EDIT commnand (see section 6.1.4). S

3-3 V d

F u '' i.K :% ' ''. L*- . : -: 1v-1g j-.u- .F . -, - .- ~' -:2 .. ' ,-. v, . ,

I

LOAD S..

3.2 LOAD

The Load entity is used with the Scenario entity to periodically trigger
Processes during the simulation, and optionally at specific nodes in the
architecture. The Load describes which Processes will be initiated and at
which nodes. An instance of the Load is triggered simultaneously at each of ,
the specified nodes. This entity can be described in the following way: for
each Process in the Load, initiate up to the maximum number at an interval .5
determined by the schedule method, and initiate them simultaneously at each of
the specified nodes. The form for the LOAD entity is shown in figure 3-2.

LOND:

HODE I NODE. rC.E- NO:,CE4

HODE5 HNOCE6 HODE7 NODE"

DE$CP I PT I Or:

PPOCEsS Mk . # -,cHr-iT[, ME4ri DELTA UNITS FF'IOP ITY

Figure 3-2. Form for the Load Entity

Following is a description of the fields in the Load forn.

LOAD: Name of the Load (I to 8 characters)

NODES: If an architecture is used these are the nodes in which the
Processes specified will take place. Otherwise leave blank.

DESCR: Any user comment (0 to 53 characters)

PROCESS: Names of Processes which the Load triggers according to

schedule. •

MAX #: Maximum number of times this Process is to be triggered in
each execution of the Load. I'

SCHMTD: Statistical function to be used to determine the time between
Process triggerings. It can be any of those described under I
SCHEDULE METFIODS (see below).

3-4 59
..9I

S -S~ 5,,

MEAN: Depending upon schedule method, MEAN is used to determine the
interval between each triggering of a Process. In general
this is the mean inter-arrival time.

DELTA: Depending upon schedule method, DELTA is used to determine the
deviation about the mean for the interval between triggering%
of a Process.

UNITS: The time units in which the schedule is expressed. The valid
entries are as follows:

Form Entry Meaning

nseconds (ns) - nanoseconds
useconds (us) - microseconds
mseconds (ms) - milliseconds
seconds (s) - seconds
minutes m) - minutes
hours (h) - hours
days (d) - days

The default value which is automatically placed in the form is 'p

SECONDS, but the user can change this default by using the
Design User Interface UNITS command (see section 6.1.9).

PRIORITY: Priority with which the Process is to be executed. Priority
is inverse, priority 1 preempts priority 2. Priority is used
to determine which Process will be allowed to allocate a
Resource when it is contended for by two or more Processes
(see ALLOC Primitive, section 3.9.2). %

SCHEDULE METHODS: 0.
V^

START - MEAN: inapplicable; i.e., leave field blank
DELTA: inapplicable; i.e., leave field blank

All Processes up to the maximum number are initiated at the
same clock time, the start of the Load. This can be used to
simulate pre-loading.

INTERVAL- MEAN: time between initiations
DELTA: inapplicable; i.e., leave field blank

One Process is initiated at every interval as defined by MEAN.
The first starts at the time given by !M1EAN with respect to the
starting time of the Load.

POISSON - MAX 0: mean number in a PERIOD
M i: inapplicabh](: i.c., leave field blank
DELTA: inapplicable; i.e., leave field blank

Processes ira scheduled randomly by a Poisson process. The
time between Prx-,2ess triggerings is exponentially
distributed. The MAX # parameter defines the mean number for
a PERIOD. PLRIOD length is defined in the Scenario.

3-5

! !h

EXPONENT - MEAN: mean time between Process triggerings

DELTA: inapplicable; i.e., leave field blank

The time passing between Process triggerings is exponentially
distributed.

LOGNORML - MEAN: mean time between Process triggerings

DELTA: standard deviation of time between Process triggerings

The time passing between Process triggerings is lognormally
distributed.

NO44AL - MEAN: mean time between Process triggerings

DELTA: standard deviation of time between Process triggerings

The time passing between Process triggerings is normally
distributed.

UNIFORM - MEAN: mean time between Process triggerings
DELTA: range about the MEAN

The time passing between Process triggerings is uniformly
distributed. The DELTA parameter specifies the difference
between the largest possible time between Process triggerings
and the MEAN time.

ERLANG - MEAN: mean time between Process triggerings
DELTA: order of the distribution function

The time passing between Process triggerings is Erlang
distributed. The order "k" is given by the DELTA.

WEIBULL - MEAN: scale parameter.
DELTA: shape parameter

The time passing between Process triggerings is Weibull
distributed.

GA4MA - MEAN: mean time between Process triggerings
DELTA: k

The time passing between Process triggerings is gaimma ma
distributed.

Operation - a Load specifies a cluster of Processes to be triggered according
to a scheduling method and a priority.

Relationships - Loads are part of Scenarios and specify Processes to be
triggered and nodes in which they are to be triggered.

[,oad entities are entered into a model by using the Design User Interface EDIT
command (see section 6.1.4).

3--6

• 2

I

ITEM

3. 3 ITEM

The Item entity is used to model transient data elements that "flow" through a
system. These data items, which, by the nature of their varying attribute
values, permit data dependent decision making and timing.

Items can be originated, terminated atd passed through the system from one
Process to another via the Primitives CREATE, DESIROY, CALL and SEND. Items
can also 1e placed on and removed fron Queues via the Primitives FILE and
REMOVE, and pointed to via the Primitive FIND. The form for the Item entity
is shown in figure 3-3.

ITEM 4HME:

DESCRIPTION:

ATTR I BUTES

NAME)ALIJE NAME UALUE

Figure 3-3. Form for the Item Entity

Following is a description of the fields in the Item form.

ITEM NAME: Name of the Item (I to 8 character)

DESCRIPTION: Any user commnt (0 to 53 characters)

NAME: Name of an attribute of the Item. An Item
can have up to 15 user-defined attributes.

VALIE: The initial value to be assigned to the corresponding
attribute (integer, decimal, or character); if character,
it must he a !efined Process, Resource, global Variable,
Constant, Item,)ueue, Table or Action or a keyword or
alha literal.

NOTE: All Items have two implicitly defined attributes, TAIL and PRIORITY.

TAIL is the number ot the tm created, and PRIORITY is the priority of the
Process that cret,!s the item. 11hc, T\ I attribute can be used for Item
matching Sfe SWD Primitv).

3-7
matching~~~~ X-cS riii,)

(2eration An item is created for each occurrence of the following:

a. a CREATE Primitive that is executed - used to model transient data

elements

b. a SEND Primitive that is executed in a Process which does not have an
Item of the specific name attached at the time.

.An Item is terminated only when the DESTROY Primitive is executed.

Attribute values are assigned at the time of creation.

Relationship Item attributes are used by Process Primitives and attribute I
values can be modified by the ASSIGNJ and READ Primitives.

Item entities are entered into a model by using the Design User Interface EDIT

command (see section 6.1.4).

3-8.

vU~.*~.*,................~U-p-.

%

USER DEFINED QUEUES

3.4 USER DEFINED QUEUES

A Queue is a global entity used to represent an ordered holding area for Items.

When a Queue is defined, a maximum size parameter is specified (the default is
"infinite"). This allows Queues to model finite storage devices that have a
limited capacity (e.g., a storage bin, a computer job scheduler). Once the
value is defined, it may not be changed and thus this parameter must be either
a numeric value or a defined Constant.

Queues are manipulated by Processes through the use of the FILE, FIND, and
REMOVE Primitives. An Item may be placed on a Queue, if space exists, by
using the FILE Primitive, specifying one of four location parameters: FIRST,
LAST, BEFORE and NEXT. The former two parameters denote the end points of a
Queue, the first and last slots. The latter two are location parameters
relative to a Queue pointer (see below). If no space exists on the Queue, the
Process which is executing the FILE Primitive is suspended. This condition is
known as Queue blocked. In this state the Process waits until space becomes
available on the Queue. Waiting for space on a Queue is by a first came first
served discipline.

An Item may be taken off the Queue by using the REMOVE Primitive and 0
specifying a location parameter (i.e., FIRST, LAST, or NEXT, where NEXT means
the current Item pointed to by the Queue pointer). After an Item is removed
from a Queue, it may be sent, destroyed, or otherwise modified.

An Item may not be modified, sent, or destroyed while it is on a Queue. The
same Item instance may not exist on more than one Queue. Multiple Processes
may access the same Queue.

A Queue pointer is maintained for each Process which references a Queue. This
pointer contains the address of the entity that the Process is addressing in a
Queue. The contents of the Queue pointer is determined by rules described
below and in the sections on the Primitives FILE (section 3.9.13), FIND
(section 3.9.14) and REMOVE (section 3.9.19):

1. The pointer contains the address of the last entity found with a FIND I
Primitive; otherwise,

2. The pointer contains the address of the last entity filed with a FILE
Primitive; otherwise,

3. The pointer contains the address of the successor of the last entity
removed with a REMOVE Primitive with a NEXT option.

The RMOVL and FIND Primitives access a Queue and set the value of the local
variable referenced in the Primitive. This means that when a FIND or REMOVE
Primitive is executed, the value of the local variable could be set to 0. This
-)ccurs under the following circumstances:

3-9 I5.

A'.. 'k.

1. A REMOVE Primitive attempts to remove an entity from an empty Queue.

2. A FIND Primitive accesses an empty Queue.

3. The NEXT or BEFORE Item in a Queue does not exist.

The form for the Queue entity is shown in figure 3-4.

QUEUE: SIZE:

DESCR:

F

Figure 3-4. Form for the Queue Entity l'.',

Following is a description of the fields in the Queue form.

QUEUE: Name of the Queue (1 to 8 character)

SIZE: An integer value of 1 to 8 digits, a defined Constant entity, or
the word INFINITE (which is the default)

DESCR: Any user comment (0 to 53 characters)

Relationships - Queues are used to hold Items. Queues are manipulated by the
FILE, FIND, and REMOVE Primitives.

Queue entities are entered into a model by using the Design User Interface
EDIT conrand (see section 6.1.4). Attributes associated with Queue entities

are described in section 3.13.

See section 3.5 for a description of system defined queues.

II

3-10.

'e V

-~* \L --Y s~~ I..* , * * l

SYSTEM DEFINED QUEUES :1
3.5 SYSTEM DEFINED QUEUES

System defined queues are managed by the simulator during a simulation run.
Queues are used to manage resources and the names of AISIM entities.

3.5.1 States Associated with Resources

Associated with each Resource entity are five simulation states upon which

statistics are kept. Four of these states apply to Resource units and one of

the states applies to Processes. Resource units can be in one of the four
states idle, busy, hold, and inactive. If a Process is waiting for a Resource

unit which is unavailable, the Process is in the wait state. Resource units
which are idle or inactive are accounted for by counters associated with the I
Resource. Busy Resource units are kept on a system-defined queue called the
busy queue. Resource units that are part of a multiple-unit request are held
in a system-defined hold queue until all requested units are available.
Processes which are waiting for Resource units are kept on a wait queue.
Resources and Processes are placed in these states during the simulation as

follows:

Resource units are idle while they are unallocated and available to
Processes. Resource units are in the idle state: (1) at the
initialization of the simulation, (2) when removed from the inactive

state (by the RESET Primitive) or (3) when removed fran the busy queue

(by the DEALLOC Primitive).

Resource units are placed on the busy queue while they are allocated by

some Process through the ALLOC Primitive. They may be removed frm the
busy queue (1) by being deallocated with the DEALLOC Primitive or (2) by
being set inactive by the RESET Primitive.

Resource units are in the inactive state when they are not available to

be allocated by Processes. Resources may be placed in this state (1) at
the initialization of the simulation, (2) frm the iile state by means of
the RESET Primitive, and (3) from the busy state by means of the RESET
Primitive.

When some of the Resource Units of a multiple-unit request are available

before tie complete request can be filled, the available units are placed
in a hold queue until the remaining units became available. Whken all of

the Resource units requested become available, they are placed on the

busy queue as described above.

The wait queue holds Processe.3 that are suspended [or lack of an
available unit of the needed Resource. A Process is placed on this queue
when either (1) it attempts to allocate the Resource (with the ALLOC
Primitive) that is held by another Process of equal or "higher" priority
or (2) it loses a Resource to a "higher" priority Process. %

Fhe relation between these states is illustrated in figure 3-5.

3-11

A~N ~W C~2m ~J ~ , w-x .&FW iro --T -61W77--~'r- *~'~w J~ ~ - -.- -Y I.P -J_ - - -7-.
..

During a simulation run statistics are kept on the activity of these states.

These results are presented in the simulation's Resource report. The user can

access the number of Resource units or Processes currently in the idle, busy,

inactive, or wait states using attributes described in section 3.13.

RESET () //ALOC ALOC

•-//RESET -

Figure 3-5. Resource States

3.5.2 Cross Reference Sets ,

In addition to the queues associated with Resource contention, there are eight
system defined queues called "cross-reference sets". These queues correspond
to the sets of names of the following AISIM entities:

1. Resource names

2. Queue names .'p

3. Process names

4. Item names

S. Action names

6. Table names

7. Constant names

8. Variable names

Mhat this means is that an AISIM modeler can write Processes which perform Vsome function on each entity defined in one of the above sets. ,,

The FIND Primitive accesses the set of names of an entity type by specifying
the name, e.g., Resource, Item, Process, as the Queue field reference in the
Primitive.

3-12

RESOURCE

3.6 RESOURCE

The Resource entity is used to model the mechanisms required to perform a oil

Process. "Mechanisms" in this context can be computer processors, memory, 4

communications channels, support personnel, documents, etc. "0

Queueing for a Resource occurs only within a Process and, in particular, only
where an ALUY Primitive is used. In other words, if no ALLOC Primitive is 7

used there will be no queueing. If no Resource is used (allocated) within a
Process, the Process can be executed in parallel (simultaneously) by any
number of concurrent requests and the model will represent only time delays

associated with the ACrTON Primitive.

When a Resource is used (allocated) by a Process, there can be only as many
concurrent executions of the Process as there are Resource units available.
For example, if the capacity of a Resource is one, then any Processes which

allocate that Resource will be executed serially (one at a time). Execution
concurrency is controlled only between the allocation and deallocation of the
Resource (i.e., if the ALLOC Primitive is the second Primitive in a Process,
the first Primitive can be executed concurrently by any number of requests
whereas the ALLCX Primitive cani be executed concurrently by only as many
requests as the Resource has units available).

If no Resource units are available (i.e., idle or presently allocated to a A

lower priority Process) when an ALLOC Primitive is attempted, the Process'
allocation request is merged onto a wait queue associated with the Resource.
How the request is merged depends on the priority of the request. The request
is merged and sorted by inverse priority (priority 1 preempts priority 2).
Within priority the sorting is done first-in-first-out. When deallocation c 1-
the Resource (by some other Process) has resulted in enough units to satisfy
the requests, and the request has moved to the top of the wait queue, then the
request is removed from the queue, the allocation is performed, and the
Process is executed. Note that a deallocation of several units may result in
several requests being removed from the queue simultaneously. For allocation
requests of multiple units, the user can specify whether the units are to be
allocated as they become available or only when all units are availal, it the

same time.

If, when the ALLUC Primitive is attempted, there is a lower nri ry Process

-possessing the desired Resource units, then the higher priority PrC>ss will

"steal" those units. The lower priority Process will be suspun~ie,! wr le -
waits for Resource units. It will be placed on the wart queue 5ut Is .

seniority is based upon the time of its first allo:aiton dttempt, not thc time
it lost its Resource-,. If at the time ! 31 muiu iple-unit request ;ie At the
units are available, and tLhe request is tor unitS to l§.a1 * S thI - .

become available, the current.ly avall, units 1r, p1l.co in i , Rucue.
until the request is rilled. As units avai labl, they ar,-, t-) th,
hold queue until all et the requested un ,t; tre Pi o. 1,. I the I M n
mved to the busy queue. V

3-13

1%

% *.

I0

The Resource entity provides the most interesting and useful simulation
results; e.g., delays, bottlenecks, utilization percentages, and traffic
statistics. Therefore, the use of Resources should be carefully designed from
both the standpoint of model credibility and the specification of required
simulation output.

The form for the Resource entity is shown in figure 3-6.

PESO.,,CE Nkr-lE:

TOTAL rItMlEEF' OF irlITS:

IriITIHL NIIME:E, F '-inITS:

LESCF'IFTI Ot :

kTTPI6EUTES

NAME I JALJE riE I IALIJE

II p

Figure 3-6. Form for the Resource Entity

RESOURCE NAME: I tD 8 character name of Resource

TFTAL NUMBER: Maximu m number ot units of the Resource that can be
allRcated (integer or nae d onstant).

[i'NITiAL NWIB[.R: Number of units availaole f)r allocation It t'ie start of
tne simulation (integer or named Constant).

DESCRIPT1ION: Any user c xmnt (0 to 53 characters)

NA4E: I to 8 character name Dt user defined attribute

VALUE: Initial value to be as:;. ned to an att-trbuto; can a-
'ing Ic preci.on real)r intLoer number, or the name of
a Aetine- l Variab e, Con-tnt t, Process, Item, Resource, .
Quvue, Actif)n, Table, -A kcyworA ,or alpha l1teral.

.3 .-

I
'V~

Oeration - Resources are initialized at beginning of simulation to the values 4
given above.

S

Relationships - Resources are used by Processes with the ALLOC, DEALLOC,
RESET, LOCK, U[NLCK and TEST Primitives.

Resource entities are entered into the model by using the Design User
Interface EDIT cortund (see section 6.1.4).

:Io

1-
.I

..',

."

%* -

-. 'F

,.4,

3-15 ,

46

ACTION

3.7 ACTION

The Action entity represents time consumption for any activity, decision,
etc., that consumes time. This entity functions in conjunction with the
ACTION Primitive. For each defined Action entity, statistics on the time
consumed by the associated ACTION Primitive are collected for the simulation's
Action report. For this reason, each Action named in an ACTION Primitive is
given a separate definition outside the Process in which it appears. These
Action entities are automatically created by AISIM whenever a user adds an
Action Primitive to a model.

In the form for this definition, the Action field contains a name identical -.
with one that appears in an ACTION Primitive in a Process. DESCRIPTION is
used to describe the Action. 4ien AISIM automatically creates an Action
entity, the description is copied from the COMMENT field of the Action
Primitive (see section 3.9.1), but the user can change the description by
using the Design User Interface EDIT command (see section 6.1.4). The form
for the Action entity is shown in figure 3-7.

-CTION:

DESCP I F'T I o:

Figure 3-7. Form for the Action Entity

Following is a description of the fields in the Action form:

ACTION: 1 to 8 character name of action

DESCRip'[ON: Any user comment (0 to 53 characters)

Relationships - Actions are referenced by the ACTION Primitive.

Note: Although AISIM automatically creates and deletes all Action entities as
a user)laces and deletes ACTION Primitives, the user is allowed to create and
delete Action entities. For example, a user would need to create an Action
entity in the case where the name of an ACTION is passed to a Process and the .
name used in the ACTLON Primitive in that Process is only a local variable
which will take on the name of the ACTION passed into it.

.<.

-16 ,.

"7

PROCESS

3.8 PROCESS

The Process entity is used to represent the sequential logic and activities,
operations, functions, etc., of the modeled system. Processes are composed of
Primitives, each of which represents a step in the function being modeled by
the Process. It is at the Primitive level that Resources are allocated and
deallocated, time is consumed, decisions take place, etc.

In the graphic representation of a Process, the Primitives are flanked at the
top and bottom by figures labeled START and END. These figures represent the
logical entry and exit points for the Process.

Processes are initiated by (1) Scenarios and Loads (within Scenarios) and (2)
by other Processes through the CALL and SEND Primitives. Once initiated, the
execution of the Process depends upon the availability of the Resources that
the Process references through the ALLOC and DEALLOC Primitives.

There are three types of Processes: parameter passing, Item passing, and
standard. Each differs in how it is triggered.

A parameter passing Process is one that takes values of local variables from
another Process as inputs and/or returns the values of local variables to the
other Process as outputs. Such Processes can be triggered only by a CALL
Primitive and it is the calling Process which sets up the relation for the
values given and returned (see CALL Primitive, section 3.9.5). The given and
return values can be numerics, string literals, keywords, the names of Items,
2ueues, Resources, Processes, Tables and Actions.

An Item passing Process is one that is triggered by having Item(s) delivered
to it from other Process(es) through the SEND Primitive. The required Items
need not be delivered from a single Process; the sending Processes may be as
many as six, but the Process will not execute until all of the Items indicated
in the definition are delivered.

A standard Process is one which neither requires Items nor is given (or
returns) parame-ters. It may be trijger2d by either a CALL Primitive from
another Process)r through the Scenario or Loads.

'henr a Proceses :3 ef inchl, the nAJe in which the Process is to execute is
sp)ec iied. [t tme Pricess can execute in any node, or it there is no

r jtocture, AK, , c.n w3 s3citW. d!enerally, when a Process is triggered,
t xecutes .n the same :zx!,h -is its sr~ent, or when a Process is triggered
r a),_a,, n)e ". sW < ' sc i tv where thu Pt-ocess i. to() ,xecute. However,

if a Process tr1'ere, J r~r a 5cerario, the nc-e specified for the Pro)ess

£5 trle ()nu : t rc;s jxcIea. 1h1 rvi'xe speCitie] in tMle PrOess
le'. rIra;iOn I 1 e I e t1o tihe i .or throujh the $'K)DE keyword (see

3-17

The initial form for the Process entity is shown in figure 3-8. .

-TART '.V

PP',EEI OFM ni 0,

~..i
k.TTPIELITES$ HTTACHEL- (YES OP NO I

PPOCESS [-E'DPIPTIOri

STAPT BLOCK TYPE

ENTEP "PkPM" FIOP F'AP(rI1ETEP PASSING

ENtTER "ITEM" FOP ITEM P16SIlG

EtTEP "STD " FOP STArC)APD PPOCESS

Figure 3-8. Initial Form for the Process Entity

Following is a description of the fields in the initial Process entity form:

PROCESS NAME: 1 to 8 character name of Process

NODE: architecture node in which this Process is to
execute (if its execution is restricted to a
specific node; ALL in this field indicates the
Process may execute in any node)

ATTRIBUTES AfTACHED: YES or NO to indicate whether the Process has
attributes.

PROCESS DESCRIPrION: 0 to 53 alphanumeric character description.

START BLOCK TYPE: (STD, ITEM, PARM)

To define an Item passing Process the user enters "Item" in the START BLOCK
TYPE field. The user will then be presented with the form shown in figure 3-9.

nII
ITEM FH' TIro STAPT

ITEMS~ PECEI JED

MUST ALL THE ITEM SERIAL !IUMEEPS r'.ITCH ryt', N

Figure 3-9. Form for an Item Passing Process

%

3-18 h3

p,%

57

This form is for providing a list of the needed Items. The Items received by

each must be of distinct types.

The field concerning the matching of serial numbers asks whether the TAIL
numbers (which is a default attribute of every Item) must be the same for all
the Items in the Process. If the user enters "Yes" in this iield, the Pro_-is
will not execute until it- has received Items of the specified type to which
the same TAIL number attribute has been assigned.

To define a parameter passing Process the user enters "PARM" in the START
BLOCK TYPE field. The user will then be presented with the form shown in
figure 3-10.

II
"7P £- :.THFST

Figure 3-10. Form for Parameter Passing Process

This form is for providing the names of the local variables to be given and
returned to any Process that calls it through the CALL Primitive. The CALL
Primitive must contain the same number of entries in its given and return
lists as the called Process. If the CALL Primitive does not give or return
all the necessary values, an execution error will occur indicating a
disagreement in the number of values.

To define a standard Process the user enters "STD" in the STARf BLOCK TYPE
field. Since no inputs are relevant to its execution, there is no secondary
form for the definition of a standard Process.

Figure 3-11 is a typical flowchart representation of a Process. This "5"
graphical representation of the logic of a Process is presented to the user

during the design of an AISIM model.

Relationships - Processes are constructed from Primitives. Resources are used "
by tie Process through the ALLk)C, LX7ALGLC, RES1M, LOCK, UNLOCK, and TEST
Primitives. Time is consumed by the AC'iON Primitive. Processes are
initiated by Loads, Scserarios Aii 'l, other Processes through the CALL and SEND
Primitives.e

Process entities are entered into a n-del by using the Design User Interface .

ID[T command (see secton 6. 1.4).

3-19U .L

_,I

HNSMrITTIIG tlE:,*-..iES TO PEI:EIIlEP(S TART'
TFHH~II / LL ,C EJF1

1 Ui I TS

~LLLICATE UR1JF \PFAPTI ,L VFPR*liF7*'/

li:G NCFETE IiF' E~s ~~~~Tr

'k. F IT~~~FC-E !. M S NOc'TE

4 ALPHA
'ENEF .TE pIiriGOm rlljr*1E:ER .

ALPHA 'AILPHA~ TIMES A!lIEFAGE

SS jrStil~E[TO
rico LHTH GET MES$,GE. LEHOTH

\.,W t IM

COt STrIT OFT tOP: PESIJME -

MU TI ME CorIUMEIC T-- 4N'M rIT71NrG

FILE

OrN 61-FFER STORE rlEG iOnt -FC

iC E LL -C EU-F

::-EE EELF: EF!

(END

Figure 3-l1. Sample Procc2ss Diaprx

3- 20

PRIMITIVES $

3.9 PRIMITIVES

Primitives are the constituent elements of Processes and are used to
characterize procedural steps by sequential logic. AISIM offers a list of
Primitives. Although limited in number, the Primitives have been shown to
represent all logical operations for computer system modeling. The Primitives
can be grouped into eleven functional categories. These categories are as
follows:

Process Execution Control ".

CALL
SEND
SUSPEND
RESUME

..
WAIT

These Primitives control the initiation and sequencing of Processes.Branch Control

COMPARE
BRANCHj

iENTRY

PROBLOOP

These Primitives govern the internal branching in the logic of a Process.
CREAT

Item HandlingC-RATE,

DESTROY

These two Primitives govern the introduction and elimination of a system's
transient data elements.

Time ConsumptionACTION

This Primitive represents the consumption of time through some activity,
d e c is io n , e t c .

'Mathematical Operations

e .

EVAL

rhis Primitive governs calculations, invoking standard mathematical functions
and operations or making U5(2 Ot usor-define l Tables.

3-21 1
I'%5

p.

Resource Allocation

ALLOC

DEALLOC
RESET
TEST
LOCK
UNLOCK

These Primitives govern the use of Resources.

Queue Manipulation

FILE

FIND
REMOVE

These Primitives govern storage and retrieval on Queues.

Variable Assignment

ASSIGN

This Primitive governs the assignment of values to Variables or Attributes

(both numerical and non-nuerical)

Debugging

TRACE %

This Primitive has the special function of creating a record of the sequence
of Process Primitive executions which takes place during simulation. It is
used for debugging and validating a model.

Input/Output

READ
WRITE

rhese Primitives enable a user to read data from and write data to external
files during a simulation run. This data can be used to control Whe execution
ot the simulation and to provide data for debuggig and validating a model.

Description

This Primitive has no functionalit dur-ng a simulation run, and is used

simply to comment the surroundiri logic in a Process.

Figure 3-12 shows Whe gtr3rphic representation of each Primitive, and following
is a description of the nlaning of each Primitive and the parameters necessary
to define each. Primitives ae entered usin, thLe Process E]itor interface of
the Design User Interlace (ce section 6.2).

3-22

,' ,, :,,wm,. "-. ," =,",:-.,,,,:, ,"," .'. " " " • , ,- ... ,....... ,...-...- -w

ACTICN ~ ~ ~ ~ ~ t r------ UITS: SECOtC3 OC

IL K

ASSGNC- - PE

BRP-.CH 1 OF1 L EOF % %

CA LL I ,I
I F M\

COM MENT LINE! E E
COT~riET RECE

CONPFARE KRESul-IE

CRiE AE

DEI- - IIrlT

F S C-7-K C TE7

ITRAC E'
EI I E

IJN I L r)E JAL __ L:~C

3-2

PRIMITIVES / ACTION

3.9.1 ACTION

The ACTION Primitive represents the consumption of time for an activity that
consumes time. The ACTION Primitive is used to model the time to perform some

real work event such as a man's activity or a machine's activity. An Action
Primitive can represent both interruptible and noninterruptible tasks (i.e.,
tasks which can start up where they left off after being stopped due to a loss
of Resources, or tasks which must be completed in one uninterrupted session).
The tine consumed by an ACTION Primitive is determined according to the

selected distribution function (described below). The form for an ACTION

Primitive is shown in figure 3-13.

P s AMETERS FOR ACTION

ACTION NAME: OPTION: Q METHOD:

MEAN TIME: DELTA TIME: UrITS:

COMMENT:

Figure 3-13. Form for an ACTION Primitive

Following is a description of the fields of an ACTION form:

ACTION NAME: A name assigned to the Action.

OPTION: Specifies disposition of the Action upon regaining
Resources that were lost due to pre-emption by a higher
priority Process. Valid options are RESTART and RESUME.
RESTART indicates that the Action must be restarted after
being interrupted. RESUME (the default) indicates that
the Action can continue where it left off.

METHOD: Distribution function type, which may be: CONSTANT,
EXPONENT, LOGNORML, NORMAL, UNIFORM, GAMMA, ERLANG or

WEIBULL. (The random number seed used for statistical
functions can be controlled by the user in the AUI.)

MEAN TIME: Typically specifies the average duration time of the
Action. This parameter varies in meaning depending on

the METHOD selected. F(,r CONSTANT, it specifies the
exact duration value. For WEIBULL, it specifies the
distribution's scale parameter. For all other
methods, it specifies the mean duration.

3-24

I..

DELTA T[ME: This parameter varies in meaning depending on the
METHOD selected. Typically it specifies the
variation, about the mean, in the duration times.
Specifically:

CONSTA1NT - inapplicable (i.e., leave field blank)

EXPONENT - inapplicable (i.e., leave field blank)

LOGNORML - standard deviation

NORMAL - standard deviation

UNIFORM - range about the mean (i.e., the
difference between the largest possible

duration and the mean duration).

GAMMA -K

ER[ANG - order of distribution function

WEIBULL - shape parameter

UNITS: The time units used in specifying the duration of the
Action. The valid entries for this field and their
meaning are as follows:

Form entry Meaning
nseconds (ns) - nanosecondsuseconds (us) - microseconds
mseconds (is) - milliseconds
seconds (s) - seconds

minutes (i) - minutes
hours (h) - hours
days (d) - days

The default value which is automatically placed in the

form is SECONDS, but the user can change this default by
using the Design User Interface UNITS command (see section
6.1.9).

COMMENT: Any user comment.

3-25

.. % I
AI~P

PRIMITIVES / ALLOC

3.9.2 ALLOC

The ALLOC Primitive indicates the allocation of (request to use) a Resource
which is needed by the Process. Whether a Resource requested by the ALLOC
Primitive is actually obtained by a Process depends on a number of conditions,
as described in the section on the Resource entity, section 3.6. If a
Resource unit is in the idle state, it is available to be allocated to the F
requesting Process. If the Resource is busy, then allocated Resource units
are checked to see if a Process can be preempted by priority (priority is
inverse - priority 1 preempts priority 2) unless the Resource is protected
with a LOCK primitive. The form for the ALLOt Primitive is shown in figure
3-14.

PARAMETERS FOR ALLOCATE:

ALLOCATE RESOJRCE NAME:

NUMSER OF INITS REQUESTED :,

PARTIAL/ALL ALLOCATION:

ALLOCATIOH PPIORITY: iIy

COMMENT: _ __

Figure 3-14. Form for the ALLOC Primitive

Following is a description of the fields in the ALLOC form:

ALLOCATE RESOURCE NAME: A reference to a Resource

NUMBER OF UNITS REQUESTED: The number of Resource units to be
allocated. 1 is the default.

PARTIAL/ALL ALLOCATION: This specifies whether the Resource units
will be allocated as they become available
(PARTIAL) or only all,)cated simultaneously
when they are all available (ALL). PkTIIAL is
the default.

ALLOCATION PRIORITY: The priority to be used to determine which
allocation request will be satisfied in
the case of Resource contention. SPRIORFY
is the default and evaluates to the
priority of this Process.

COMMENT: Any user comment.

3-26

N N . -

PRIMITIv'LS / ASSIGN

3.9.3 ASSIGN

The ASSIGN Primitive is used to set the value of the following references:

I. a global Variable

2. a local (to the executing Process) variable

3. the attribute of an Item (currently attached to the Process)

4. the attribute of a Resource

5. $CNODE (see section 3.17)

6. the attribute of a Process

Values that can be accessed for the assignment are:

1. signed, single precision, real or integer numbers

2. $CLOCK (see section 3.17)

3. global Variables or Constants

4. local variables

5. Resources with any of the qualifiers NWAITQ, NBUSYQ, NINACTQ or

NIDLEQ (see section 3.13)

6. Item attribute values

7. Queue qualifiers NQUEUE or TQUEUE (see section 3.13)

8. Resource attribute values

9. Process attribute values

10. an Item name

11. a Resource name

12. a Process name

13. - Queue nime e,
14. Table n.oc

15. an Acticn narn'e

16. $'D 'DL:tlir 3.17)

32

3-27,,

I
I

h

17. $NXODE (see section 3.17)

18. $LINK (see section 3.17)

19. $TASK (see section 3.17)

20. $CNODE (see section 3.17)

21. an alpha literal (tirst character is $) (see section 3.16)

The form for the ASSIGN Primitive is shown in figure 3-15.

P.FHF 1E1EP. FF,'P k$I h

Q I

' ~~CLrIMErIT :.'

TO
%"

Figure 3-15. Form for the ASSIGN Primitive

In the form, V1 and Qi are used to reference the current value, and V2 and Q2
are used to reference the value being set. For accessing values such as local
variables, the simulation clock, etc., only the "V" fields need to be used.
If the user is accessing an attribute of an entity, such as an Item, both the
"V" and "Q" fields need to be used. The "V' field contains the name of the
entity (Item, etc.) being accessed, and the "Q" field contains the name of the
attribute of the entity whose value is desired or being set.

Following are examples of 6me typical entries:

VI: Item VI: Item VI: Variable
QI: attribute QI: attribute Ql:
V2: Item V2: Variable V2: Item
Q2: attribute Q2: Q2: attribute .

Vi: Variable VI: Constant VI: Constant ..p
rQ1 : Q1 : Ql :

V2: Variable V2: [tem V2: Variable
Q2: Q2: attribute Q2:

CMMENT: Any user commvnt.
Note that it is the entity sijxcified by V2 and Q2 that takes on the new value

spec itid by Vi and Qi.

Ile

7-WX -.- F. . 7J . a

PRIMITIVES /BRANCH

3.9.4 BRANCH

The BRANCH Primitive indicates an unconditional branch to a named entry point.
It is used for Process execution sequence control. The form for the BRANCH
Primitive is shown in figure 3-16.

FPPAETEPS FOR' BPA'H:

BRANC41H TO LA~BEL:

COMrIErT:

Figure 3-16. Form for the BRANCH Primitive

Following is a description of the fields in the BRANCH form:

LABEL: The entry point to which the Process execution is to go
(which must be defined by an ENTRY Primitive).

COMMEW1: Any user comment.

3 -21

PRIMITIVS / CALL

3.9.5 CALL

The CALL Primitive triggers execution of the called Process.

A CALL has one of three options (1) WAIT, (2) NOWAIT and (3) BLOCK. If a
Process is called with the option WAIT, the calling Process will suspend
execution until the called Process is completed. If a Process is called with
the NOWAIT option, both called and calling Processes will execute
simultaneously and will have no further communication. If a Process is called
with the BLOCK option, the two Processes will execute in parallel until a WAIT
Primitive is reached in the execution of the calling Process. Mien the WAIT
Primitive is reached, the calling Process suspends execution until the called
Process(es) complete(s). The principal purpose of the BLOCK option is to
allow the calling of several different Processes, all of which must be
completed before the calling Process will continue. If several Processes are
called with the BLOCK parameter, the calling Process will suspend at the W AIT
Primitive--whose presence somewhere below such a CALL Primitive is
obligatory--until all of them have completed execution.

Two of the three kinds of Processes can be triggered via the CALL Primitive:
paraneter passing Processes and standard Processes. The triggering of an Item
passing process is discussed in the section describing the SEND primitive. In
triggering a parameter passing Process with a CALL Primitive, parameters are
given to the called Process and/or parameters are returned to the calling
Process. Parameters can be numerics, string literals, keywords, or the names
of Items, Queues, Resources, Processes, Tables, and Actions. Parameter
passing Processes with return parameters can be called only with the WAIT
option. Standard Processes, which neither give nor return information ,nay be
called with any of the three options WAIT, NOWAIT and BLOCK.

The CALL also requires that a priority be established for the called Process.
Priority is inverse, priority I preempts priority 2. This priority may be
used by the called Process when competing with other Processes for available
Resources (through the ALLOC Primitive with $PRIORTY, see section 3.9.2).

The form for the CALL Primitive is shown in figure 3-17.

3"30

3-30 :,

- -A~ ~ ~~ ~ v, ?. +.t ;+ TJ JJ

%

IN

Rki r1ETERF NLL

D CLLE-POCESThe rocssttE ied

WAIT/N WTBOK xlie above. uT.BIIis'the default.

GIVEN: Up tosxprm swoevle r ob

F'ETUP Ii :

rr:Mr1EP4T _____________________ "-A

A

iFigure 3-17 Form for the CALL Primitive .tl

Following is a description of the fields in the CALL form:.'

CALLED-PreCESS NAME: The Process to be triggered.

WMIT/NOWAIT/BLO3CK: Explained above. NOWAIT is the default.

PRIORITY: The priority associated with the triggered..,
Process (discussed above).

GIVEN: Up to six parameters whose values are to be

communicated to the called Process. Left blank A<

if called Process is a standard Process. "

REITdRN: Up to six parameters whose values are to be '

returned to the calling Process. Left blank if A.

called Process is a standard Process.

COMMENT: Any user comment

33

'

3-31

3-3~V/$v' . 1 . ,'

:.'

3.9.6 COMMENT

The COMMENT Primitive is used to add descriptive text to a Process. Lt has no
eftect on the operation oL the Process. It is used simply to make the Process
more understandable. A COMMENT Primitive can be placed anywhere within a
Process after the START Primitive and before the END Primitive, and there is
no limit to the number of COMMENT Primitives within a Process.

.7

The form for the COMMENT Primitive is shown in figure 3-18

COMTENT:

Figure 3-18. Form for the COMMENT Primitive

Following is a description of the fields in the COMMENT form:

PARAMETERS FOR COMMENT: The fields provide the user with space to enter up to
four lines (64 characters each) of descriptive text.

Note: In the simulation output report, each line of a COMMENT Primitive has
an asterisk (*) appended to the beginning of the line. This asterisk is used
by AISIM to recognize the COMMENT.

3'

3-32 .

,

1 , °.

7 V. . ..-.. -0 7 7 7. .777-7 7'.-Y

PRIMITIVES / COMPARE

3.9.7 COMPARE

The COMPARE Primitive is used to model decisions based on user-controlled

variables or the values of system keywords and attributes. The COMPARE

performs the following operation:

IF P iS TRUE, THEN GO TO A

where:

"A" is an ENTRY lab-el (defined by an ENTRY primitive) which is branched to if

P is true.

"P, is a predicate which can be TRUL or FALSE. It consists of a phrase:

Xl OP X2 .P

XI,X2 can be: V
(I) signed, single precision, real or integer numbcrs

(2) global Variables or Constants

(3) local Variables

(4) Resources with either NWAITQ, NBUSYQ, NINACI'Q or NIDLEQ
attributes (which cannot be modified by the user) (see section

3.13)

(5) $CLDCK (see section 3.17)

(6) a value specified by an Item name and attribute
' W

(7) a value specified by a Resource name and attribute

(8) a value specified by a Process name and attribute

(9) an Item name

(10) a Resource name

(11) a Process name

(12) a Queue name

(13) a T-able name

14 an Actio:n name 3.'7

(15) $N0O" (see sction 3.17)

3-33V

I]

I

(17) SLINK (see section 3.17)
1

(18) $TASK (see section 3.17)

(19) SCNOZDE (see section 3.17)

(20) an alpha literal (first character is $) (see section 3.16)

(21) a Queue with either NQUEUE or TQUEUE as an attribute (which
cannot be modified by the user) (see section 3.13)

"OP" is one of the following operators:

EQ - equal to,

NE - not equal to,

GE - greater than or equal to, j

GT - greater than,

LE - less than or equal to,

LT - less than.

Operation - "Xl" is compared to "X2" using real, single precision aritrretLc.
If the comparison results in the same relation as "OP", then "P" is sot TRUE
and a branch is made to label "A"; otherwise, no branch is made (the next
Process Primitive is executed).

Ihe form for the CCMPARE Primitive is shown in figure 3-19. e.

P r.IETEFSD FOP crOrPHFE

IF 0F'EF-C1: ' : -HLIFIE' I -:.
FELATI ..

EF, -r H TO :j-

Figure 3-19. Form for the CIPAR: rimitive

ie drarmtcr5 o the t)rm .i led in is ' dtt. at)vc . I

3-34-

V

. I.

Ag

PRIMITIVES / CREATE

3.9.6 CREATE

The CREATE Primitive is used to create Items (note the SEND Primitive can al'- o
create Items as part of its function). The initial attribute values (defii,-u
when the Item is declared) are assigned upon creation. Each Item created is
attached to the Process. Two Items of the same name cannot exist in a Process
-i t he same time. Item definitions are specified in the DUI. The form for
the CREATE Primitive is shown in figure 3-20.

:'F-1iETEF"S FCIP CREATE '

1TE.l"I T, EE F'EHTED AFE:

COrIMEHT

Figure 3-20. Form for the CREATE Primitive

Following is a description of the fields in the CREATE form:

ITEMS: references to distinct Item types, instances of which are
to be created

COMMENT: Any user cominent.

1or

5 2

!- ,'S

T

PRIMITIVES / DEALLOC

3.9.9 DEALLOC

The DEALLOC Primitive indicates the release of previously allocated Resources.
It is used to represent the release of a Resource (making it available to
another request) upon completion of a job. The form for the DEALLOC Primitive
is shown in figure 3-21.

P 4 ' P M E T E RI $ F O R E 4L _')C k T E :

DEALLOCATE PESOUPFE r "kr'E:

NUMBER OF UITS [,E-LLOCHTE[,:

COMMEtIT : .

Figure 3-21. Form for the DEALLOC Primitive I

Following is a description of the fields in the DEALLOC form: V,

RESOURCE NAME: A reference to the Resource to be released.

NUMBER OF UNITS: A reference to the integer nuber of Resource units
to be returned to the idle state. I is the default.

0

COMMENT: Any user ccm ent. -

3-.

oV..

3- 36 -

* *.. -

PRIMITIVES / DESTROY

3.9.10 DESTROY

The DESTROY Primitive is used to eliminate Items from the system, marking the
end of the time in system. Wen an Item is destroyed, statistics on its tP".
in the system are tabulated for the simulation's Item report.

The form for the DESTROY Primitive is shown in figure 3-22.

PAtHrETEF3 FOS E'.T'-'Y

ITEr1c T0 BE ESTF':,'E, APE:

corr EHT:

Figure 3-22. Form for the DESTROY Primitive

Following is a description of the fields in the DESTROY form: N.-
ITEMS: References to distinct Item types, instances of which are I.

to be destroyed.

COMMENT: Any user ccrnent.

3-3

.-,

• .o

I

,.,

gi

'1

PRIMITIVES / ENTRY X.

3.9.11 ENTRY

The ENTRY Primitive is used to define entry points from branches contained in

the Primitives BRANCH, PROB, CCMPARE, TEST, READ and LOOP. The form for the

ENTRY Primitive is shown in figure 3-23.

PARAMETERS FOR ENTRY:

ENTRY LABEL:

COMMENT:

Figure 3-23. Form for the ENTRY Primitive

Following is a description of the fields in the ENTRY Primitive:

ENTRY LABEL: The 1-8 character name of the entry point used by the

Primitive(s) which transfer control to it.

COMMENT: Any user coamnent.

3-33

PRI14ITIVES / EVAL

3.9.12 EVAL

The EVAL Primitive is used to perform arithmetic functions within a Process so
that model logic and timing can be a function of variables rather than a
constant. This Primitive can also be used to access a Table. The EVAL
Primitive is different from the other AISIM Primitives in that one of the EVAL
parameters is a free-form expression whose result is assigned to the EVAL
variable. The expression can be composed of references to several AISIM
constructs within a single expression.

The valid functions that can appear in an expression are the following:

op1 + op2 : add - Returns the sum of opl and op2
opl - op2 : subtract - Returns the difference of opl and op2
opl * op2: multiply - Returns the product of opl and op2
opl / op2 : divide - Returns the quotient of opl and op2
opl**op2: exponentiation - Returns the value of opl raised to the

power op2

absolute (opl) - Returns the absolute value of opl
arcosine (opl) - Returns the arc cosine of opl in radians;

-i < opl < 1
arcsine (opl) - Returns the arcsine of opl in radians

-i < opl < 1
arctan (opl) - Returns the arc tangent of (l/opl) in

radians; opl = (anglel/angle2); opl < > 0.0
beta (opl, op2) - Returns a random sample from a beta

distribution
opl = power of x; opl > 0
op2 = power of l-x; op2 > 0

binomial (opl, op2) - Returns a random sample from binomial
distribution
opl = number of trials
op2 = probability of success

cosine (opl) - Returns the cosine of opl in radians
Erlang (opl, op2) - Returns a sample value from an Erlang

distribution
opI = mean
op2 = k (integer order of function)

exponent (opl) - Returns a random sample from an

exponential distribution
opl = mean

gamma (ool, op2) - Returns a random sample from a gamma

distribution
op- = mean
op2 = k

integer (Dpl) - Returns the integer part of opl
loge (co)) - Returns the natural logarithm of op1

op1 > 0

3-39

*a

lognorml (opl, op2) - Returns a random sample from a normal
distribution
opl = mean
op2 = standard deviation

loglo (opl) - Returns the ccmmon logarithm of opl
opl > 0

normal (opl, op2) - Returns a random sample from a normal
distribution
opl = mean
Op2 = standard deviation

Poisson (op) - Returns a random sample from a Poisson
distribution
opl = mean

random - Returns a random number between zero
and one

sine (opl) - Returns the sine of opl in radians
opl > 0 -u

sqrt (opl) - Returns the square root of opl
opi> 0

tangent (opl) - Returns the tangent of opl in radians
uniform (opl, op2) - Returns a uniformly distributed random

sample between a range of values
opl = mean
op2 = delta (the difference between the
largest possible value and the mean
value)

Weibull (opl, op2) - Returns a sample value from a Weibull

distribution
opl = shape parameter
op2 = scale parameter

The operands (opl and op2) for the above functions can consist of the

following types of values:

- signed, single precision, real or integer numbers

- named Variable or Constant entities

- named local variables

- references to Process, Resource, or Item atLributes

- references to Table entries

- $CLOCK

- $PRIORCY

3-40

"I "-," ~-p .

a,., enclosed .in prent.eses. F'ctionoperands can be.eiUher thvalues..

rhe syntax for function calls in an expression is as it appears in the above
list. The function name appears followed by its operands separated by comas
and enclosed in parentheses. Function operands can be either the values

listed above, or another expression consisting of functions using the above
values. Spaces are ignored within an expression.

Following is a Bachus-Naur Form (BNF) type description of the syntax of valid
arithmetic expressions. The symbol "I" is an "or" symbol, which means that
3ny one of the choices may be selected. The symbol ": :=" means that any of
the choices on the right of the symbol can be used to replace the element
named on the left of the symbol.

term ::= term mulop tacto- I factor

factor factor ** primary I primary

primary function-call I (expression) I numeric-literal I
entity-name [attribute] I Table-name(expression)

unqualified-entity

function-call function (expression, expression) I
function(expression) I function

addop + I -

mu lop::* /

"function" is any function name appearing in the above list.

"Entity-name" is a named Process, Resource or Item entity, or a local variable
which refers to the Process, Resource or Item.

"Table-name" is named Table entity or a local variable which refers to the
Table.

"Unqualified entity" is a named global Variable or Constant, or a local
variable.

N11 numeric calculations are performed in double precision, real arithmetic
and then rounded to sirjle precision values.

3-41 I
4

~1

The form for the EVAL Primitive is shown in figure 3-24.

P-PHMETER$ FOR E'l L p

SET ')kPIHBLE: P

AITHMETIC EPRESSIl N:

.

COMMENT:

Figure 3-24. Form for the EVAL Primitive

Following is a description of the fields in the EVAL form: a

SET VARIABLE: The local variable or global Variable or Constant

whose value is to be set. r

ARITHMETIC EXPRESSION: Up to four lines for an expression in the

valid syntax and using the types of variables

described above.

COW1ENT: Any user comment. Note: The comment is displayed on -

the Process graphics only if three or fewer lines are _.

used for the arithmetic expression.

a..

a...

3-42

-a6

PRIMITIVES / FILE

3.9.13 FILE

The FILE Primitive is used to place an Item on a user-defined Queue.

The effect of filing an Item on a user-defined Queue is to keep it in storage 2

after the Process from which it is filed has ceased execution. The form for

the FILE Primitive is shown in figure 3-25.

F'PRAPETEFS FOP FILE:

FILE ITEM rAME: OPTION: ON QUEUE: I

COMMENT:

Figure 3-25. Form for the FILE Primitive

0

Following is a description of the fields in the FILE form:

FILE ITEM NAME: A reference to the Item to be filed. ..

OPTION: The location in the Queue at which the entity is to be
filed relative to the Queue pointer. The following can be
used:

FIRST - The entity is placed first and the Queue pointer
is set to it.

LAST - The entity is placed last and the Queue pointer is
set to it. This is the default.

%

NEXT - The entity is placed after the current Queue
pointer position in the Queue and the Queue pointer is
reset to it.

BEFORE - The entity is placed before the current Queue
pointer position in the Queue and the Queue pointer is
reset to it.

QUEUE: The Queue on which the Item is tr be filed.

COMMENT: Any user cwnment.

p 3-

3-43 ?-

1U -: - -. AJ- 7 . 7

* hJ.

PRIMITIVES / FIND

3.9.14 FIND

The FIND Primitive is used to reset the Queue pointer on a user-defined Queue
(section 3.4) or a cross-reference set (section 3.5.2), and to assign to a
local variable a "locator" pointer to a current position in the Queue. The
rules governing Queue pointers are covered above in the section on

user-defined Queues. The form for the FIND Primitive is shown in figure 3-26.

F IP4ETEPS FOR FIID: I

FIND OPTION: ITEM NHrE: ON QUEUE:

COMMENT:

Figure 3-26. Form for the FIND Primitive

Following is a description of the fields in the FIND form:

FIND OPTION: The location (FIRST, LAST, NEXT, or BEFORE) of the

Item or member of the cross-reference set to be
assigned to the variable relative to the present Queue

pointer. NEXT is the default.

ITEM NAME: The local variable which will refer to the Item or
member of a cross-reference set.

ON QUEUE: The name of the Queue or cross-reference set that is
to be traversed. If the cross-reference set is
intended, the entity type whose cross-reference set is
to be traversed is entered.

COMMENT: Any user corient.

The effect of locating an element with the FIND Primitive is (1) to set the
Queue pointer to the beginning or end of the ordered holding area (i.e., FIRST
or LAST) or relative to the previous location of the Queue pointer (i.e., NEXT
or BEFORE), and (2) to assign the element in the position then indicated to
the local variable.

OL!

3-44

- . ,,, P, _,

p

PRIMITIVES / OCK

3.9.15 LOCK

The LOCK Primitive prevents a Process from being suspended by losing Resources
to a "higher" priority Process (priority is inverse, priority 1 preempts
priority 2). LOCK is used to represent uninterruptible work. If LOCK is not
used, Process execution can be suspended by a higher priority Process. When a
Process loses any one of the Resources it has allocated it stops execution and
is placed on a system-defined queue (the wait queue) until the Resource is
again available. The LOCK Primitive overrides this suspension. The form for
the LOCK Primitive is shown in figure 3-27.

P MPANETEPS FORi LOCK:

COMMET:

Figure 3-27. Form for the LOCK Primitive

Following is a description of the field in the LOCK form:

COMMENT: Any user ccxnrient.

.3-4

.5

• .

'2"-

9!

PRIMITIVES / LOOP

3.9.16 LOOP

The LOOP Primitive causes a branch to a named entry point a specified number
of times. The form for the LOOP Primitive is shown in figure 3-28.

PARAMETERS FOR LOOP:

LOOP TO LABEL:

LOOP TIMES

COMMENT:

Figure 3-28. Form for the LOOP Primitive

0 Following is a description of the fields in the LOOP form:

LABEL: The name of the ENTRY label (defined by an ENtRY Primitive)
to which execution is to branch.

LOOP: Indicates the number of times Primitives between the ENTRY
label and the LOOP Primitive will be executed. This
includes the initial pass. For example, if 10 was used,
then for each execution of the Process, the Primitives

.1w. between the Entry label and the LOOP Primitive would be
•., executed 10 times. Execution control would branch back to

the ENTRY label 9 times.

COMMENT: Any user comment.

1 3-46

I,

..............................p.......................... ~-- ~~v-- ,
,%.

* .) 77a i 6 . - - 7:7777 .0 74

PRLMITIVES / PROB

3.9.17 PROB

The PROB Primitive is used to model stochastic decision making. It indicates
a probabilistic branch to a named entry point. Random number selection for
the probabilistic branch can be controlled by the use of the EDIT STREAM
command in the AUI. The fon for the PIR)B Primitive is shown in figure 3-29.

F-IMETEPS FOP F'ROBBILISTIC BRANCH:

EF:RHHC TO L E'EL:

FPOEAeILIT'i' OF BE'ACH:

COMMENT: '

Figure 3-29. Form for the PROB Primitive -

Following is a description of the fields in the PROB form:

LABEL: The ENTRY label (defined by an ENTRY Primitive) to
which the branching is to take place.

PROBABILITY: The probability with which the branching is to take
place, expressed in (integer) percent.

COMMENT: Any user cowment.

3-47

a.%

_%-.

PRIMITIVES / READ

3.9.18 READ

The READ Primitive is used to obtain values from an external file for use
within a model during a simulation run. This Primitive facilitates the use of

case-study type sinulation runs where there is a file for each case study

containing values which will be read into the model for each run. In this way

the data for the model can be changed without having to change the data in the

model data base. The form for the READ Primitive is shown in figure 3-30.

F',FHr ETEFI' " FOP PEHD :

FE A[FPO FILE: p

EHD CF FILE EFirHHH LHEEL:

COMMErHT

Figure 3-30. Form for the READ Primitive

Following is a description of the fields in the READ form: p

READ FRfM FILE: A 1 to 8 character logical name for the file to be

read from. The default for the actual external lile
name associated with this logical name is "name.TXI",

1%N

but the user can change the actual file name
associated with this logical name (see section 3.11). !

END OF FILE BRANCH LABEL: The ENTRY label (defined by an ENTRY %
Primitive) to be branched to in case an end-of-file is Ile

detected.

Vl: The variable to be set to the value read from the file.

Ql: A qualifier for the entity in Vl. For example if VI
is an Item reference, Q1 can be the nadii of an
attribute of the Item whose value is to be set.

COMIENTl: Any user comnent.

3-48

prw
,' '. ',,% .,,':; ' , '4 " , -. m ,'. ', -,'.'....'.'.-;-_,-.. ; '.- '..- --.-.-... " - .. . - ,",-, .-_...-.-....-. • ,... ::.. .1*::.-i

The reference consisting of Vi and QI can be one of the following: .'

- a global variable

- a local variable

- the nare of a Resource, Item, or Process for Vl and either the
name of an attribute or "(]" for Qi. In the case of "f]" the READ
Primitive will read in all attributes of the entity.

- the keyword $CNODL.

r"

V

p

,.1*

1

:..

" V

Pr

3-49 p

. ,. ? - - ,. , , .. , -, .., . . -, . -. . , -. ,, .- .. - - .. -. . , . , ,-"

PRIMITIVES / REMOVE

3.9.19 REMOVE

The REMOVE Primitive is used to remove an Item fron a user-defined Queue.

The effect of removing an Item is to make it inaccessible to other Processes
until it has been placed on another Queue (through the FILE Primitive) or
delivered to another Process through the SEND Primitive. The form for theREMOVE Primitive is shown in figure 3-31.

P~ PAMrETEFS FOP FEMOJE:

PEr1O'E OFTION : ITEM HN E: FFOM QUEUE:

COMrIENT:

Figure 3-31. Form for the REMOVE Primitive

Following is a description of the fields in the REMOVE form:

REMOVE OPTION: The location in the Queue of the Item to be removed.
The option can be one of the following:

FIRST - The first entity is removed and the Queue
pointer is reset to the new first element.
This is the default.

LAST - The last entity is removed and the Queue
pointer is reset to the new last element.

NEXT - The entity associated with the current
Queue pointer location is removed and the

Queue pointer is reset to the succeeding
element to it in the Queue.

ITEM NAME: The local variable that will contain the Item which
is removed fron the Queue. If there is no Item to be
removed, this local variable is set to zero.

FROM QUEUE: The Queue frcin which the Item is to be removed.

COMMENT: Any user comment.

3-50
I.''

. . . • " " ' qa l I i J - ; : ' : , - - : * lI - i. i . -
"

N,'

PRIMITIVES / RESET

3.9.20 RESET

The RESET Primitive redefines the number of available units of a named
Resource to plus or minus the indicated value. It is used to represent thL
increase or decrease of the available number of Resource units. The form for
the RESET Primitive is shown in figure 3-32.

FHi.IETEFPS FOP RESET:

FESOUF':E rPMrE:

P'E.ET BY (+'-I JLMTS

C OMM"IENT :

Figure 3-32. Form for the RESET Primitive

Following is a description of the fields in the RESET form:

RESOURCE: A reference to a Resource whose available units are
increasing or decreasing.

RESET BY (+/-): The number of units to be added to or subtracted
frcon those presently available. If more units are
to be made available, this value is positive. If %
units are to be made unavailable, this value is %

negative.

CccMMEr\£: Any user comment.

3-51
A

3-51-

Ii N:

,., .,.. . ,--.:.,_.,-. : .,,> , %-. , , ,-,.-. ,-., , ,.vk5 % %,A.

PRIMITIVES / RESUME

3.9.21 RESUME

The RESUME Primitive is used to control explicitly the resumption of a Process

which has been suspended through the SUSPEND Primitive. Resources deallocated

at the time of suspension must be obtained again before Process execution
progresses. The requests for these Resources is autcmatically handled by the

RESUME Primitive. There is no preferential treatment given to these requests.

They are treated in the same manner as an ALLCC Primitive. The form for the

RESUME Primitive is shown in figure 3-33.

FESUME FFOCESS PEFEF'EN.:E 6','

Q1 - Q I 4
COMMENT:

Figure 3-33. Form for the RESUME Primitive

The fields V1 and Ql constitute a reference to task that is being resumed (see

SUSPEND) and the COMMENT field is any user comment.

Ir

3-52

' iiV

" ","] '? T," " " "." " """" '" ' "3.""""' ";"-""; '- " - "" " " "- .- . -.• v,.. -.-. ,-- . ,-.. -. . - ,...- . , -.-. . - . .

b.m

PRIMITIVE / SEND

3.9.22 SEND

The SEND Primitive is used to send up to six Items to an Item passing Process.

If an Item to be sent is not currently attached to the sending Process, it

automatically created. When the Items are sent, the receiving Process
determines whether all the Items required by its definition have been

received. If they have, the Process then initiates; if not, it will wait

until all of the necessary Items have been received before executing. The
form for the SEND Primitive is shown in figure 3-34.

PAPHMETEPS FOR SEND

SENED ITEMS TO

ITEMS TO E:E SENT APE:

COMMEriT:

Figure 3-34. Form for the SEND Primitive

Following is a description of the fields in the SEND form.

SEND: A reference to the Process to which Items are to be sent.

ITEMS: References to up to six Item types, instances of which are

to be sent.

COMMENT: Any user comnent.

-3-53

] ,,

I", e "

,.

I% -

PRIMITIVES / SUSPEND

3.9.23 SUSPEND

The SUSPEND Primitive is used to suspend the Process in which it appears. A

Process that suspends itself with this Primitive may only be resumed
by

another Process which uses the RESUME Primitive. Since the RESUME Primitive

must be able to refer to the task instant to be resumed, the suspending

Process instance rust save a reference to itself (i.e., assign the value of

the keyword $TASK to a global Variable or send it as an attribute of an Item)

for later access by a RESUME Primitive. See section 3.17 for a description of

$TASK. The SUSPEND Primitive causes the deallocation of the Resources

allocated to the Process. The form for the SUSPEND Primitive is shown in

figure 3-35.

PARAMETERS FOR SUSPEND:

COMMENT:

Figure 3-35. Form for the SUSPEND Primitive

Following is a descriptio1,, f the field in the SUSPEND form:

COMMENT: Any user comment.

3-54'1 , %

PRIMITIVES / TEST

3.9.24 TEST

The TEST Primitive indicates a branch to a named ENTRY Primitive if a Resource

or Queue is not available. It is used to model decision making based on t,.e %,
availability of needed Resources or Queues. The form for the TEST Primitive
is shown in f igure 3-36.

AFgPFMETE'S FOF TEST:

3' PE'SOUPCE N-IE:

BFPANCLH TO LHEEL IF HOT AkAIL, BLE

COMMENT :

Figure 3-36. Form for the TEST Primitive

'-S Following is a description of the fields in the TEST form:

°dRESOURCE NAME: A reference to the Resource or Queue being tested

for availability.

BRANCH TO LABEL: The name of the ENTRY label (defined by an ENTRY
Primitive) to which execution is to branch if the

Queue or Resource is not available.

CCt4MENT: Any user ccrment.

3-55

PRIMITIVES / TRACE 10

3.9.25 TRACE

The TRACE Primitive starts a debugging mechanism that is useful for analyzing
the dynamics of an AISIM model. The effect of the TRACE Primitive is to
create a file that records every execution of a Process and of the following
Primitives within the Process.

STA r,

CALL

ALWOC

DEALLOC

END

RESUME

RESET %

SUSPEND
A

TRACE (on or off)

These Primitives are traced because they introduce major changes in the state

of the system into a simulation run.

When the TRACE Primitive is operating, every instance of these Primitives in

every Process is recocded either for the remainder of the simulation or until
TRACE is turned off. The trace line writes out the simulation clock time, the
node in which the Primitive is executed, and the Process executing the
Primitive. The format for a trace line is the following:

T = "clock time" N = "node name" P = "Process name" "Primitive parameter"

Tne form for the TRACE Primitive is shown in figure 3-37.

P(iPWI'ETEFS FO'R TFH-E

FOCCIFF:

:-OM ErHT:

Figure 3-37. Form for the TRACE Primitive

3-56

" - -' " . -,, .,"

-F V

Following is a description of the fields on the TRACE form: 'p

ON/OFF: "ON" to enable the TRACE.

"OFF" to disable the TRACE.

COtW4ENT: Any user cn ment. V.

A

6.

S

N

42

"'

:''C

PRIMITIVES / UNLOCK

3.9•26 UNLOCK

The UNLOCK Primitive cancels the effect of a previously executed LOCK
Primitive. It is used to represent the conclusion of the uninterruptable
phase of a Process. The form for the UNLOCK Primitive is shown in figure 3-38.

i.P r'tETEFS FOP IJrLOI:,

COMMIENT:

Figure 3-38. Form for the UNLOCK Primitive

Following is a description of the field in the UNLOCK Primitive:

COMMENT: Any user comment.

3-58

P

-,i

SC,,

-.

I3-58 ,-,

I *'

PRIMITIVES / AIT

3.9.27 1AIT

The VZ.T Primitive is used in conjunction with the CALL Primitive when the
BLOCK option is used. The WAIT Primitive indicates that the calling Proces. ,
is to be suspended until all Processes it triggered by a CALL with the BLOCK s .

option have completed and returned control to the calling Process. It is
generally used to model phenomena such as assembly points, executive I
schedulers, and other events in which progress cannot continue until several
parallel activities are completed. Resources currently in possession of the
calling Process are not deallocated. The form for the WAIT Primitive is shown
in figure 3-39.

FiPAP(METEP$ FOR LAIT:

COMMENT:

Figure 3-39. Form for the WAIT Primitive 'i',

Following is a description of the field in the WIT Primitive:

COMMENT: Any user comment.

rr

II

.-..

3-59

PRIMITIVES / WRITE

3.9.28 WRITE

The WRITE Primitive is used to write values from a sinulation run to an

external file. This data can be helpful in debugging or verifying a model.

The form for the WRITE Primitive is shown in figure 3-40.

V.

PARAMETERS FOR WRITE:

WRITE TO FILE:

,.Ji: Q1:

COMMENT:

Figure 3-40. Form for the WRITE Primitive

Following is a description of the fields in the WRITE Primitive:

WRITE TO FILE: A 1 to 8 character logical name for the file to which -

the data is written. The default for the actual

external name associated with this logical name is
"name.TXT", but the user can change the actual file

name associated with this logical name (see section3.11i).

Vl: The local variable or entity reference whose value is

to be written to the file.

Qi: A qualifier for the entity in VI. For example if Vl

is an Item reference, Q1 can be the name of an

attribute of the Item whose value is to be written.

COMMENT: Any user coiment.

3-605

-A6 AAA Ak-"..

I

%-.

'S

The reference consisting of VI and Qi can be one of the following: 1<

- a global variable

- a local variable .J
.-

- an attribute value by using the name of a Resource, Item, or
Process for VI and the name of an attribute or "[]" for QI. In the S

case of "[", the WRITE Primitive will write all of the attribute
values to the file.

- a Process, Resource, Item, Queue, Table or Action, in which case
the name of the entity is written.

- an alpha literal

- kewords $fNXTNODE, $LINK, $TASK, $CNODE, $PRIORTY, $CLOCK
p -p

- Resource with NWAITQ, NBUSYQ, NINACTQ, or NIDLEQ as an attribute

- Queue with NQUEUE or TQUEUE as an attribute

6 .%

3-61]-
-'%% * " %'.*. ' 'Up U". " % - - - . .. • , •

,; " '' '- ' ' '' "'' t"% 7- '.< - = < <-- : 'i* " . v - -= . 5* , --

*11

LEGAL PATH TABLE

3.10 LEGAL PATH TABLE -NODE -LINK

.4.

The Legal Path Table (LPT) entity is the means by which the user can rmodel
physical ccxmunication paths between Resources. Typically, this is referred
to as inter-node ccnmunication. Viien the EPT is not used, the commrunication
mechanism~s are implicit in the Process logic and do not usually have explicit
Resources that cause comunication queueing and transfer delays.

Two other nxxi-l elements need to be discussed as part of the LPT entity; these
are nodes and links. Nodes represent the points in an architecture where
processing occurs. Links are the corunication paths between nodes. Each node
and link is actually a rrfdel Resource -- the name of the Resource being the
name of the node or link. Full duplex links (denoted by " F" after the link
name) are two Resources3. One will be named the nare of the link with " A"
appended to it and the othier with"B.

'

The LPT consists of a four part list that specifies the FROM~ node, a TO node, -
a NEXT node, and a LINK. An example of Legal Path Table entries is given in

* figure 3-41.

S,

FROM TO NEXT VIA 4

NODE NODE NODE LINK N.N

"_.

A C C C
8 C f-2
CA A C1

C B 6 C 2
C D 0 C 3
D C C '_4 *~

D E E

*E 0 D0
FG G :8

0 D CS
F G G C7
G E E C 8

CF F C7
C H H C
G I I CIO
H G G C9

G G CIO

TiPure 3-41. entiith Tase s hic Lr ries

The headings indicateon tat Uo re Reo the ynde to th iO node e ms
first go to the NcX node via the the o w the codeNa.on

The L T is a passivc entity in that it does not contribute diryctve to the
simulation statistics hut, instoad, is simply a 'table of values used bya
model to efect data flow through a ystato. It is only changed through the
Architecture Design Editor anid thcref!ore remains constant for any specific
s oitmular Iion rune. Processed reto eiscse the LPi pa t hhe \S or Cip.aRe
Pr imiov a t Nes using $C.DE (currentL n he, $pN t nex t anaiec As Spec if ied
in LPr) and $LINK t e Link tar he trairo kpywrds seen sect.ion 3 17) I

3-62k

and i aae.

Operation - Every Process in AISIM can be set to execute in a specific node.
Using the LPT through the keywords and the ASSIGN Primitive, a Process can
locate itself in the network and reference other nodes. The referencing is
done symbolically so that a Process can do this when executing. This allows

\ISIM to model different architectures without changing the model Processes.

14

36

3-63

* P.M.

FILES

3.11 FILES

The File entity is used to represent an external file which can be accessed
during a simulation run. File entities are tied to READ and WRITE Primitives.
Whenever a user places a READ or WRITE Primitive within a Process, the user
specifies the logical name of a file that will be accessed during that read or
write operation. A File entity is created with the same name as specified in
the READ or WRITE Primitive for each unique logical file name. The user is
not allowed to create, delete or copy File entities, or change the name of a
File entity; AISIM automatically maintains all File entities. The user may
edit a File entity with the DUI EDIT command to change its description (see
section 6.1.4). The form for the File entity is shown in figure 3-42.

FILE:

DESCrPIFTIOr:

Figure 3-42. Form for the File Entity I
Following is a description of the fields in the File form:

FILE: I to 8 character logical file name

DESCRIPTION: Any user comment (0 to 53 characters)

Each File entity contains the logical name of a file to be accessed during the
simulation. Associated with each logical file name, there must be an actual,
physical file to which data is written or from which data is read. AISIM
maintains a file called project.FNM that contains a list of all logical file
names in a model and the physical files associated with each of those logical
file names. During a Design session, AISIM reads in the information in the
".FNM" file for a model, makes updates as necessary as the user updates the
model, and then rewrites the file at the end of the Design session.

Whenever the user uses a new logical file name in a model, the physical file
assumed to be associated with that name is "logical.TXT". For example if a
user places the name "PARMDATA" in a file name field of a READ Primitive, a
File entity called PARMDATA is created, and the physical file to be associated
with that logical name is set to be. "PARMDATA.FXT". This association is then
written out to the file project.FNM when the user exits the Design function.

When a simulation is run, it will read the project.FNM file to determine the
names of all files to he accessed. All files to be read from must exist prior
to the simulation, and files to be written to may or may not exist. If the
user wishes to associate a file other than Lh, default "logical.TXE" with a

3-64

, • U.na -%T M V .- •:.a,.. .~~~~~~ V"&.,. . . ;. :,,. ,,,;, ,,.::.. .. ,: ,.:::

logjical file nae, the user can edit the ".FNM" file and change the nam ofthe physical file to be accessed. This type of change will facilitate the use
'

•of various case studies for a model. The physical file name in the ".FNM"
file can be up to 43 characters in length.

.5-

,,.

5'.2

TABLES

3.12 TABLES

Tables are user definable functions with 1 to 15 entries. Each entry consists
of an X-VALUE and a Y-VALUE. The following may be used for these parameter
values: (1) both numeric, (2) one numeric and the other alphanumeric or (3)
both alphanumeric.

Tables are accessed by using the EVAL Primitive. In the EVAL Primitive
expression field, the Table name is followed by an X-VALUE enclosed in
parentheses. The SET VARIABLE will be set to the Y-VALUE which maps from the
X-VALUE. A Table evaluation can also be part of a more complex arithmetic
expression as long as the Y-VALUE is numeric.

3.12.1 Discrete Tables

If the Table accessed is discrete (TYPE is D), the Table entry's X-VALUE must
be numeric, and the X-VALUE entries must be in increasing order. The Y-VALLJE
extracted fram the Table is that value associated with the X-VALUE that is
equal to or less than the X-VALUE given in the Table index. For example, if
an X-VALUE of 3.5 is used as the index and the nearest X-VAUJES in the Table
are 3 and 4, the Y-VALUE associated with the X-VALUE of 3 will be extracted
and placed in the given SET VARIABLE name. If the index is less than the
smallest X-VALUE, the value returned is the Y-VALUE associated with the
largest X-VALUE.

3.12.2 Continuous Tables

If the Table accessed is continuous (TYPE is C), all X-VALJE and Y-VALJE
entries must be numeric. The SET VARIABLE of EVAL is set by the following
rules

a. the Y-VALUE associated with the X-VALUE that equals the index, or

b. the interpolation of the Y-VALUE associated with the X-VALUE
which is less than the index and the X-VAUJE greater-than the index,
or

c. the Y-VALUE associated with the largest X-VALUE, if no
interpolation is possible.

: 3.12.3 Al2hanumeric Tables

If the Table is defined as alphanumeric (TYPE is A), one or both X-VALUE and

Y-VALUE] for each ent must be a name of a model entity. The SET VARIABLE is
set to the Y-VALUE corresponding to the X-VALUE.

If the expression for an index into a Table in the EVAL Primitive does not
correspond to an X-VAJJE in the Table referenced, an execution error Message
will be printed in the analyze report and the value of the SET VARIAB13E will
remain unchanged.

3-66

The form for the Table entity is shown in figure 3-43.

TBLE : TYPE: 3

COMM'ErNT:

X.. OHU LE JCPLUjE

Figure 3-43. Form for the Table Entity

Following is a description of the fields in the Table form:

TABLE: 1 to 8 character name of table

TYPE: C - continuous, D - discrete or A - alphanumeric.

X VALUE: x-axis value

Y VALUE: y-axis value

COMMENT: any user comment. (0 to 53 characters)

0 Table entities -ire entcruc, using the Design User Interface EDIT comrmand (see
section 6.1.4).

36

I.

p 4 ,~.f

WI -r XV WV I fV 1- 7 L- WW V UR. INV 7: WV V- W- V-wr- 7 7, F ~- l- -A XV .F-W . ~~. W -, N v' w [J

I

ATTRIBUTES

3.13 ATTRIBUTES

Certain AISIM constructs have associated attributes which can take as values,
(1) numerics, (2) alpha literals (3) entity names, or (4) keywords. Some
attributes are user defined. Others are dynamic attributes which are
recognized and modified by the AISIM simulator.

The values of attributes may be accessed by a Process with the ASSIGN and
COMPARE Primitives. The forms for both of these Primitives use two fields to
indicate the value accessed. The first field contains the name of the entity
and the second the name of an attribute associated with it.

Three AISIM entities, Processes, Resources and Items, may have attributes
specified by the user. These attributes allow the amxdeler to define a unique
set of characteristics for certain entities. An exanple is a channel.
Channels have a physical attribute of maximum transfer rate. This
characteristic is assigned to the AISIM Resource by specifying an attribute of
RATE for the channel Resource.

Simulation experience has shown that some logic in a system is dependent on
the system's dynamics. That is, some activity is dependent on queue lengths
or the number of busy Resources. Since this phencmenon is fairly coamon,
AISIM has embedded features to model this. The following attributes are built
into the AISIM simulator for each instance of an entity. These attributes may
be accessed by the COMPARE and ASSIGN Primitives, but the values for the
Resource and Queue attributes may not be changed by the user.

Entity Attribute Description

Resource NIDLEQ the number of units of the Resource which

are in an idle state

NBUSYQ the number of units of the Resource which
are in a busy state

NINACTQ the number of units of the Resource which
are in an inactive state

NWAITQ the number of Processes executing which are
deallocated

Item TAIL the sequential creation numnber of the Item 1.

PRIORITY the priority of the Item

Queue NQUEUE the number in the Queue

TQUEUE the average time entities are in the Queue

3-68 " •

Nx.

CONSTANTS AND VARIABLES

3.14 CONSTANTS AND GLOBAL VARIABLES

Constants and Variables are entities used to define global parameters of a %

model, that is, values which may be accessed by all Processes. There is ..

implicit caution which must be used when using these entities. Because AISIM
simulates multi-processing, global parameters can be accessed "concurrently"
by more than one Process. Care should be taken when multiple Processes modify
the same global Variable.

N Constant is given a numeric value ,before the start of a simulation. The
value must be iumeric and can not be changed by the simulation. A Variable
may be set, to (1) an alpha literal, (2) the value of a keyword, or (3) to any -,

other \ISIM entity that may be accessk-d by the EVAL and ASSIGN Primitives. A
Variable's value may vary throughout the simulation.

The initial values of both Constants and Variables are set in the Design
portion of AISIM. The value of both entities may be reset, before the
simulation is started, in the Analysis function.

While the value of a Constant may not be changed durinj the simulation, the
initial value of a Variable may be changed by the user (between periods or at
break points) or by the model itself (by use of the ASSIGN and E'VAL
Primitives).

Constants and Variables may be used in place of a numeric value anywhere a 0
numeric value is required with the following exceptions:

I. The number of units of a Resource may only be a Constant or a
numeric value.

2. The initial value of a Constant must be a numeric value. 0

The fonrms for Cnstants and Variables are shown in figure 3-44.

S,.

,-_ ~,-r4 ~T :

'-L E - ,,

F,-,,I PT

- F-

--69

~.. F'

P !N. p r Ir r r0
F- o i w 3 fl -'. w.; tn ~nd V ari h L nt1 ics

Following is a description of the fields in the Constant and Variable forms:

VARIABLE/CONSTANT: 1 to 8 character name of Variable or
Constant.

VALUE: 8 digit floating point or any AISIM variable .1
reference to a numeric value.

DESCRIPTION: Any user coment. (0 to 53 characters)

Constant and Variable entities are defined using the Design User Interface
EDIT cofmmand (see section 6.1.4). U

B

P.

3-70

J 9.

LCAL VARIABLES

3.15 LOCAL VARIABLES

AISIM has two kinds of variables: local and global. Global Variables are
those explicitly defined within the nodel and given initial values. Local
variables are variables that appear in Process Primitives but are not
otherwise defined. Local variables enable Processes to execute in parallel
without interfering with each other because each Process has an independent
set.

At the beginning of the execution of a Process all local variables are

initialized to zeco. They will remain so unless other values are explicitly
assigned to them. Local variables may be assigned values with the ASSIGN and
EVAL Primitives or through parameter passing. Local variables may be assigned
the following values:

Numeric - a floating point or integer number

Global Constant or Global Variable value

Another local variable

A Resource name

A Process name

An Item name

A Queue name

An Action name

A Table name

An alpha literal (first character $)

The value of a keyword evaluation

Although "local," the values of such variables can be communicated trom one
Process to another through parameter passing (i.e., through the CALL
Primitive). Note that logical file names within READ and WRITE Primitives
cannot be passed in via a CALL Primitive. Local variables can be used to fill
in any parameter slot in any Primitive that is not an option, a label, a
distribution or function, an3 including:

Item attribute

Resource attriblite"

Process attributu

CALL g iv,n paramet r

3-71

1 606z .X&1W*

".. ~ ~ ~ ~ ~ rir W.Y %-)(V) FIzfl4 FL- w.. U~4 F- 7r~ J~ r7 ~ \ ~j~W 4.'- -Y, x -.T-W V.;' -. ---.-

or

CALL return parameter

Process given parameter

Process return parameter
ALLOC Resource name'

DEALLOC Resource name

CALL Process name
CALL Priority name

ASSIGN set variable (variable 2)

COMPARE variable

FILE Queue name

FILE Item name

FIND Queue name

FIND Item name

REMOVE Queue name

REMOVE Item name

RESUME task reference

3'-

S'S'

5''.

5%-
7

, '5

ALPHA LITERALS

3.16 ALPHA LITERALS

An alpha literal is a character string. It consists of a $ followed by up to

seven other characters, as in

$WAIT

arxi

$JONES

that do not make up the name of a keyword (see next section). Alpha literals

can be used to compare strings for identity or nonidentity with the COMPARE

Primitive. Tihey can be used as attributes. This is useful for making AISIM

modeis ,more readable.

,%

obI

3-73
..

V.

F:.E W, DS

3.17 KEYWORDS

The following keywords are defined in the AISIM simulator and may be used in
Process logic in any Primitive in which the evaluation of t.e keyword results

in a value which is correct in context.

Like alpha literals, these terms begin with the character "$". However,

keywords function differently from alpha literals. Keywords evaluate to a
value. In that sense they can be considered intrinsic functions.

$CLCCK - The value of the current simulation clock during the execution of a
simulation run. This keyword may be placed in any field of a Process
Primitive which may contain a numerical value.

$CNODE - The reference to the current node in which a Process is executing.
All Processes can be set to execute in a node in the architecture. The node
corresponds to a Resource. This keyword evaluates to the Resource. This
keyword allows a modeler to control allocation and deallocation of a node from
within the execution of a Process. This keyword can be assigned a value.
This, in effect, changes the node in which a Process is logically executing.
This is the only keyword that may be assigned a value in the Process logic.

$TASK - The current instance of the Process in which this keyword appears. A
Process executing in a simulation can assign the value of the $TASK keyword to
a global Variable. This allows one Process to suspend itself and another
Process to resume it by referencing the Process to be resumed with the stored
value of $TASK.

$PRIORTY - The priority of the currently executing Process. This keyword is
generally used in an ALLOC Primitive to resolvo Resource contention issues.

$NODE - $NODE takes one argument, a reference to a Process. Given a PLocess,
$NODE evaluates to the name of the node in which the Process has been defined
to execute. This is the name of a Resource. This keyword allows a Process in
AISIM to determine a destination for messages which request a specific Process
to be executed. The node specification for a Process is defined by a user and
is associated with the START symbol for the Pcocess.

The following kevwrds directly access the legjal path table and architecture
structure. Each keyword evaluates to the na.v)' 3 node or link Resource.

$NXTNODE - $NXTNODE takes one argument:, a refere.nce to a destination noie.
Given a destination noxle, $NX1TNODE assumes the current node ($CNODE) ot the
executing Process is the source (FRO) node. Nccessing the Vgal path table,
$NXTNODE returns ile name of Lhe next ncde ni)rvj tne path to the destiaation
node. This is the name of a Resource. Th'is keyw-ord allows the AISM rmodeler
to write Processes that pet r r s3die irwaiJir] tnrijh a nvtwo k.

3.

SSLINK - SLINK takes one argument, a reference to a destination node. Given a

destination node, $LINK assumes the current node ($CNODE) of the Process is

the source (FROM) node. Accessing the legal path table, SLINK evaluates to

che name of the link to the next node along the path to the destination nvxe.
This is the name of a Resource.

3 -

N,-7

MESSAGE ROUTING SUBMODEL

3.18 MESSAGE ROTING SUBMODEL

Wnen one Process triggers another through a CALL Primitive, the called Process
is initiated in the same node as the calling Process. This is implicit in the
AISIM simulator and is true even if the called Process is associated with a
different node.

In order to model the functional distribution of Processes throughout a
network, a logical Process communication feature had to be incorporated into
AISIM. One requirement for this feature is that the delays inherent in the
network communications be accurately represented in the model so that if a
Process resident in one node initiates a Process resident in another node, the
delays and queueing effecting this communication are taken into account.
Also, AISIM is required to enable the analysis oC different architectures
perforning the same functions with a minimum of change to the model.

To satisfy these requirements a special submodel has beekn devised to represent
the routing of messages through an AISGM architecture and to initiate remote
Process triggering. Since different protocols for network communication are

conceivable, the AISIM message routing function has ben implemented as an
AISIM model and included in the AISIM system library under the name COMMUN-B.
This enables an AISIM user to select and merge this model into his own. The
advantage of this approach is that the user can review t-he logic in this
submodel, determine its appropriateness to his problem and modify the message
routing submodel if necessary. This will not often be the case because the
message routing submodel applies to many communicatiois networks.

The message routing submoiel uses the architecture and Legal Path rable of a
model through the use of the system-defined keywords and the Process
Primitives.

The message routing submode1 consists of o:re Item reopesenting the message
dispatched throigh the system ac--hitectUire, [Dur Processes representing tho
activities required for thu inte--nIle cco-m, uni-if1 ti)n andi other sipporting
entities. Everything r'i-uir-? for tLis ×iel iw included in the AISIM system
library and can be merged into a user's rv,,,_ . 5t rrle X-l L'tion. (See
section 10.2 of the [Library User Interftice.

Add.t ionai dtai in the messdie toeu r 1Vj SatThLe ._r ')) OV ided in appendix D.

Z

3--76

AP-AL99IVATUIATU INIERCTI SIPASTIOI hhEL (AZSJI) YAK1VERSIO s71o US' WN.. (U) NUUHES IRCRAFT CO
FULLERTON CA GOUND SYSTEM UCUP V MIRTON ET lL

UNCLSSIFIED 9 Y 7ES-T--2 F9--C-N 7 F/ 125IL

mmhmhhhhmmm

-L -"02'00

S1.8

5'1.6

-wee,110 ~*8 2

- ~ 5n_ *'-5IIN %;=
Z--Z-Z~~~e'z-I. Z eE %t.%

SECTIO 4

AISIM SYSTEM OVERVILVJ AND SYSTEM INITIALIZATION

The AISIM user interface consists of the following levels of operation:

Level I - Not connected level
Level 2 - VA/VMS Ready level
Level 3 - AIS[M READY level I
evel 4 - 4A - Design User Interface (DUI) Sublevel

evei 4B - Analysis User Interface (AUI) Sublevel
Level 4C - Replot User Interface (RUI) Suble;el
Level 4D - Eardcopy User Interface (HUI) Sublevel

Level 4E - Library User Interface (WUI) Sublevel

Level 4F - File Management User Interface (FUI) Sublevel I
Level 4G - Help Editor Interface (HEI) Sublevel

Level 5 - Level 5Al - Process Editor Interface (PEI) Sublevel

Level 5A2 - Architecture Design Editor (ADE) Sublevel
Level 5h1 - Merjein (M1)
Level 5E2 - Mergeut (40)
Level 5E3 - Checkin (CT)
Level 5E4 - Checkout (CO)

Level 5E5 - Convert (CONV)
Level 5GI - Update (UPD)

The relationship of these different levels is shown in figure 4-1. The
current level of operation determines the system's response to a given
command. For example, the command EDIT LOAD is valid only in the DUI
level. Each level prompts the user for input with a specific symbol or
phrase. For example, the AISIM READY level prompts with the phrase "AISIM
READY" on the screen when it expects a command to be entered from the
keyboard. The DUI level, on the other hand, prompts with an "*". The

prompt for each level is shown in the figure in its box. The commands ,i
used to go from one level to another are shown next to the arrows
indicating the direction of transfer.

I
S%

"-A-

I!i
- . '.-~-.,.v~l'--------7a~,p'a -: ~ ~ ,."-.

z Fj

cc V.

w '-2

-ij

a a

4% a,

\

I F F ~ F vo

F (A ~ Q

Fiue -. 1111LAol f OvIat

4-2U

4.1 REACHING THE AISIM READY LEVEL
p

The procedure for logging on is specific to a given computer system and
the user is referred to local references for gaining access to the top
level of the system on which AISIM is hosted. (This section assumes a VAX

compatible host. For other installations please refer to installation
specific instructions.) When prompted with:

the user has reached Level 2 of AISIM operation. To reach Level 3, the

user enters the command:

AISIM

When execution of this command completes, an audible 'beep' will be heard
at the terminal and the AISEM READY pronpt will appear on the terminal.

N- 3 .

4-3-

4.2 ACCESSING AISIM HELP

The help capability within AISIM provides a means for the user to receive and

disseminate information pertinent to the AISIM tool. The help information is

located in a separate help data base. This help information initially falls

under one of two top level topics, modeling concept or function level. The

modeling concept help information available is essentially that information

found in chapter 3 of this manual. For each modeling concept that has

subsections in chapter 3 a corresponding subtopic of the concept will be

available within the help database. The other major topic within the help

database is the function level topic. Help information on each AISIM function

appearing in this manual is available within this topic. Within each function

name subtopics corresponding to each function's valid canmands will be

available. Accessing these subtopics will provide help information on the use

of that [unction's commands. In addition, subtopics corresponding to each

command's parameters will provide further help information.

The structure of the help database supplied is as shown in figure 4-2.

FUNCTION LEUEL CONCEPT

I I

COMMND SUBCONCEPT ;

PARAMETER

Figure 4-2. Help Database Structure

An extended capability of the AISIM help facility is the ability to create

help information. An AISIM user may create or modify help messages through

the Update function within the Help Editor Interface. Help information mnay be

placed under one of three general top level topics: guideline, note or

procedure. Any AISIM user may create or modify the information under these

topics, however, only one user at a time may access the database for updating.

The forms supplied for creating and modifying help messages are shown in
figures 4-3 through 4-5.

4-4

C31AELItNE NH-aE: DATE:

I
Figure 4-3. Form for the Guideline Help Topic

Following is a description of the fields in the Guideline form:

GUIDELINE NAME is the name of the guideline help topic.

DATE is an optional user supplied date.

rOTE HWIE :UiTE:

Figure 4-4. Form for the Note Help Topic

Following is a description of the fields in the Note form:

NOTE NAME is the name of the note help topic.

DATE is an optional user supplied date.

4-6

VU VU Lmp, ^ V ,T-~~u' yn~~r ' 'jw i ~:~i ~ \

P',2C E 'UF'E IrirE LTE :

N

Figure 4-5. Form for the Procedure Help Topic

Following is a description of the fields in the Procedure form:

PRUR AEis the name of the procedure help topic.

DATE is an optional user supplied date.

A valid topic name wiil consist of up to 16 characters from the set of

printable characters.

The date field can contain up to 20 characters.

The textual input will De assumed to end urmYn the detection of two blank lines

in the form. This will allow the u'e of a single blank line for separation of

text and will .* tnoite the Iisplay of trailing blank lines when the help
information is lat,,r ,isqla'd. Up to 20 lines of 79 characters each of text

may be 1 nput.

4-7 •J
I *"S. "

SECTION 5

AISM READY LEVEL

At the AISIM READY level of operation a number of ccmnands are available

to the user for directing the course of the session (ANALYZE, CHANGE, BATCH,

DESIGN, END), for manipulating the database (BACKUP, EDIT, RESTORE, LIBRARY),
for requesting information about AISIM operation (HELP), for requesting .model

data (PRINT, HCOPY, GENLIST), for creating a data file to be used by a READ

Primitive during a simulation run (FILMAN), for adding information to the
available HELP messajes (HEI), and for deleting temporary AISIM files
(DELFILE). These commands aro? summarized in the commnand sunnary in figure 5-1
and described in the following sections. These cormands may be entered only
while in the AISIM READY level of operation (i.e., when the user has received
an AISIM READY prompt).

S

5-ii

ANALYZE (PROJECT(project)] [NCXL.ATE] [TERM(terminal))
A [P(project)I [N) MTterminal))

BACKUP [P~JECT(project)]
[P(project))

BATCH [TERM (terminal)] I
[T(terminal))

CHANGE [PIRJECT(project) I [TERl(terminal))
C [P(project)1 [T(terminal)l

DELFILE [PROJECr(PRQJECT) I
DELF [P~project)]

DESIGN [PIV)ECT(project) I [TERM(terminal)]
D [P(project)] tT(termninal)]

EDIT [PROJECT(project)] (TRACE]H

END

* FIL. A FILE(filenare)[ERWKHK(project)I [TERM(tenninal)I
*F F(filename) [E(project)) [Tterminal)]

GENLST [ROJCT~pojec)) TEM~ermial)

* GELIST [PfUJr project [TE(terminal)]

GLIST [PJ(projecI [TE(teinal)

* HCOHC [P~1Jr project [TE(terminal)]

* HELP [subtopic],...,[subtopicl
* HELP [@topic) ,[topic--name) ,[subtopic),... ,[subtopicI

* RHET [TERM(terminal)j
HEI [T(terminal)]

b
LIBRARY
LIB

LIST
r

* LISTOFF

LISTON

MSGOFF

Figure 5-1. AISIM READY Level Cmmand Suninary

5-25

A.7

MSGON

PRINT [PRINT (project)]
P [P(project)I

REPLCT [PRJECr(project)] [TERM(terminal)]
RP [P(project)] [T(terminal)]

RESTORE [PRJECT(project)]
[P(project)I

Figure 5-1. AISIM READY Level Ccxrrnand Summary Ccont'd)

5-3,

AISIM READY / ANALYZE

5.1 INITIATING AN ANALYSIS SESSION

Simulation of the model developed under the DUI sublevel (see section 5.6) is
accomplished through ccmmands available in the AUI sublevel. The AUI is
accessed from the AISIM READY level by issuing the following command:

ANALYZE [PIOJECT(project)] [NOXLATE] [TERM(terninal)]

A [P(project)] [N] [T(terminal)]

where:

[PRIJECT(project)] is an optional parameter indicating the project
database to be used. If omitted, the project is assumied to be the last ,%
project specified in a previous AISIM READY level ccmmand.

[NOXLATE] is an optional parameter indicating that, FOR THIS ANALYSIS
SESSION ONLY, no translation from the "project" database is to be
performed, and simulation input from a previous translation is to be used.
The "previous translation" must have been performed. If this parameter is
omitted, the translation will be performed.

[TERM(terminal)] is an optional parameter indicating the type of terminal
the user is logged on to. If omitted, the terminal type is assumed to be
the last terminal type specified in a previous AISIM READY or LIBRARY
READY level command. The valid terminal types are the following:

HP - HP2647A or HP2648A terminal
HP23 - HP2623 terminal
TEK - TEK4105 terminal
' 'T - VTI00 terminal with Selanar graphics

The system will respond with the following:

CURRE4T PARAMETFERS IN EFFECT:
VERSION: PRODUCTION VERSION 5.0
TERMINAL: Terminal type specified in comand or default
PR}OJECT: Project specified in canmand or default
USER: Userid
XLATE/NOXLATE: XLAFE/NOXLATE, depending upon command.
FENFER YES 'T PRXCEED, NO T ABORT ...

0 Typing "yes" will caise the system to complete the transfer to the A111
sublevel. A "beep" will be given at the terminal and the AI prompt (#) will
appear when the system is ready to accept c<rronds at the 4lIT sublevel. These
c(xamnds are discussed in section 7. A "no" respy)nse will ab)rt the conrnand.

5.
-p.

5-4 p,

WA F; W.iF L

:tl ,',.,.

AISIM READY / BACKUP

5.2 BACKING UP A DATABASE

To provide a backup of a project database, especially useful for saving a
copy of the present model design before it is altered or modified, enter
the following command:

BACKUP [PROJECt (project)]

BACKUP [P(project)]a"

where:

[PROJECT(project)] is an optional Parameter indicating the project
database to be backed up. If omitted, the project is assumed to be the
last project specified in a previous AISIM READY level command.

The system responds with the following:

CURRENT PARAMETERS IN EFFECT:
VERSION: PRODUCTION VERSION 5.0 I
TERMINAL: Default terminal type
PROWECT: Project specified in command or default
USER: Userid
ENTER YES TO PROCEED, NO TO ABORT...

A "yes" response will cause a backup copy of the project to be stored in a
database file named project.BCK. A "no" response will abort the command. .

.'S

Q,,

5-6

a.a.i

AISIM / BATCH

5.3 RUNNING AN ANALYZE SESSION VIA BATCH MODE

An analyze session can be submitted to run in Batch mode. The syntax for the
BATCH command is as follows:

BATCH [TERM(terminal)
[T(terminal)]

where:

[TERM(terminal)] is an optional parameter indicating the new terminal type to

be used. If omitted, the terminal type default value remains unchanged. The
valid terminal types are the following:

HP - HP2647A or HP2648A terminal
HP23 - HP2623 terminal
TEK - TEK4105 terminal
VT - VT100 terminal with Selanar graphics

This command causes a command file to be created which will run an analyze

session. This conmand file can then be submitted to a batch queue on the

user's system in order to run the simulation.

The advantages of the batch method are:

1) The user does not have to remain at the terminal through out the
AISIM session. All necessary job information is specified up
front and the system takes charge.

2) It is not necessary to use a graphics terminal. Any terminal
connected to the VAX will suffice.

3) Multiple simulation runs can execute concurrently.

4) Simulation runs can be deferred to execute during off-peak hours.

The system prompts the user for the following information.

ENiTER NAME OF PRXiECT (1-8 char): the name of the project to be used.

DLO Y(I WISH 'IT TRANSLAFE THE MODEL? yes or no based on the user's choice.

DO YOU VANT 'T ADD A DESCRIFPIION F)R 17IS RIN? (Y/N) yes or no based on the
user's choice. Yes causes a descriPticm form to be presented.

TER GOflMAfnlE F)P AISIM RUN (<CP [)D) >

Enter commnands for AISIM run. Alluable AUIT covmnands are CANBREAK, DELETE,
FDIT, END, (F7i DE, (i), T' IFRFS, SAV;, and I iNIf

5-7

Commands are typed one per line, in the order they are to be acted upon.
Commands must be typed in the correct format. The GO and END ccmmands are
mandatory. All other commands are optional.

After the above processinj is ccnpleted, a file called SUBBATCH.COM will have k
been created. This file can then be submitted to an appropriate batch queue
with any other information such as at what time the job should run (see VAX
SUBMIT command for available parameters). If no extra information is
necessary, the following command will submit the AISIM job to the default
batch queue to be run immediately:

SUBMIT SUBBATCH. COM

Figures 5-2 and 5-3 show sample batch run setups.

AISIM READY
>BATCH
ENTER NAME OF PROJECT (1-8 CHAR): project
DO YOU WISH TO TRANSLATE THE MODEL? yes
DO YOU WANT TO ADD A DESCRIPTION FOR THIS RUN' (Y/N); yes

ENTER COMMANDS FOR AISIM RUN (<CR> TO END)
>e c,msgrate,I
>e c,errorate,2
>go
>end

SUBBATCH.COM CREATED
AISIM READY
>submit subbatch.com

Job 303 entered on queue SYSSBATCH
AISIM READY

Figure 5-2. Sample Batch Job Submission

.

%pl
%%

UaI * , -~ ... 5-8

P.P

IC7 6J

AISIM READY
>BATCH
ENTER NAME OF PROJECT (1-8 CHAR): project
DO YOU WISH TO TRANSLATE THE MODEL? yes
DO YOU WANT TO ADD A DESCRIPTION FOR THIS RUN? (Y/N): yes

ENTER COMMANDS FOR AISIM RUN (<CR> TO END)
>e c,msgrate,I
>e cerrorate,2
>get def,plotdef
>go
>save plot,plots,plots created in simulation run

>end
>no

SUBBATCH.COM CREATED
AISIV READY
>submit subbatch.com

Job 304 entered on queue SYSSBATCH
AISIM READY

Figure 5-3. Sample Batch Job Submission with Plots

5-9

,. J /w . ,S',S ,,'',' L ' ', ''.L S'_.L s ' ;-" "" '. '.s '-' '-' :.", ", ,-x ,- ... , - -.- -. , - 9.
.1

45L-
L , ' , " 'r" ' '

"
, " '

AISIM READY /CHANGE

5.4 CHANGING THE CURRENT PARAMETERS

The current parameters of an AISIM session (PROJECT and TERMINAL) can be
changed via the CHANGE ccfmnd. The syntax for the CHANGE comannd is asfol lows.

folowsCHANGE [PROJECr'(project)] [TERM(terminal)]

C [P(project)] [T(terminal)]

where:

[PRJECT(project)) is an optional parameter indicating the new project
database to be used. If onitted, the project default value remains
unchanged.

(TERM(terminal)I is an optional parameter indicating the new terminal type
to be used. If omitted, the terminal type default value remains
unchanged. The valid terminal types are the following:

HP - HP2647A or HP2648A terminal
HP23 - HP2623 terminal
TEK - TEK4105 terminal
VT - Mr1OO terminal with Selanar graphics

This command causes the current default project and terminal to be set to
the names entered. The current default parameters are then listed as
fol lows:

CURRENT PARAMETERS IN EFFECT:
VERSION: PRODUCTION VERSION 5.0
TERMINAL: Default terminal type U.

PROJEcr: Project specified in ccmmand or default
USER: Userid

'5

.5

.

5- 0 .55It

AISIM READY / DELFILE

5.5 DELETING PRCJECf FILES

The DELFILE command is used to delete the following five files for a
specified project:

i) project.XLT

2) project.WDB

3) project.RPT

4) project.1.ST

5) project.TRC

ro delete these files, the user types:

DELFILE [PRIJECT(project)]

DELF [P(project)]

where:

[PROJECT(project)] is an optional parameter specifying the project nane
for the files. If omitted, the project is assumed to be the last project
specified in a previous AISIM READY level conand.

The system responds with the following:

CURRENT PARAMETERS IN EFFECT:

VERSION: PRODUCTION VERSION 5.0
TERMINAL: Default terminal type
PROJECT: Project specified in command or default
USER: Userid
ENTER YES TO PROCEED, NO TO ABORT...

A "yes" response will cduse the files to be deleted. A "no" response will
abort the command.

,-

,I p. -, q , - " a '* .**J' -" ,m ..m • . .* *, - -o 1.

S

AISIM READY / DESIGN

5.6 INITIATING A DESIGN SESSION

A project database is created/modified using the commands available in the
DUI. The DUI is accessed from the AISIM READY level by issuing the
following command:

DESIGN [PROJECr(project)] [TERM(terminal)]

D [P(project)] [T(terminal)I

where:

[PROJECT(project)] is an optional parameter indicating that the desired
project file to be acted upon by the comand is "project", where "project"
is a standard alphanumeric file label containing 1-8 characters beginning
with an alpha character and containing no special characters or embedded
blanks.

[TERM(terminal)] is an optional parameter indicating the type of terminal
the user is logged on to. If cmitted, the terminal type is assumed to be
the last terminal type specified in a previous AISIM READY or LIBRARY
READY level command. The valid terminal types are the following:

HP - HP2647A or HP2648A terminal
HP23 - HP2623 terminal
TEK - TEK4105 terminal
VT - VTI00 terminal with Selanar graphics

The following is displayed after entering this command:

CURREN'T PARAMFTERS IN EFFECT:
VERSION: PRODUCTION VERSION 5.0
TERMINAL: Terminal type specified in the command or default
PROJECT: Project specified in the command or default

USER: Userid
ENTER YES TO PROCEED, NO TO ABORT...

A "yes" response causes the completion of the level transfer. A "no" response

will abort the comand. If "yes", the terminal will display:

CREATING VJDRKIN% DATABASF

Followed by:

..... COPY COMPL&ETE

The DUIt prompt (*) will appear when the system is ready to accept coriands
at the D(1I sublevel. These commands are discussed in section 6.

The project database is stored in a database file named project.DWF. The
working copy of the database is stored in a database file named
project.WD)B. The file association list is stored in a fil, named project.FNM.

5-12,'

%%

AISIM READY EDIT

5.7 VIEWING OUTPUT REPORfS

To access the rmiel simulation report or rmoiel trace interactively on the
terminal (via the EDTF editor), enter the following crimand:

7,DIT [1PRLJCF(project)]

EDIT [P(project)I

Dr

EDIT [PROJ} -'(project)] [TRACE]

EDIr [P(project)l [TRACE

where:

[PlUJECT(project)] is an optional parameter indicating the project database to
edit. If omitted, the project is assumed to be the last project specified in
a previous AISIM RZADY comand.

(TRACE] is an optional parameter indicating that the project trace file is

desired for editing rather tJhan the report file.

Result:

The EDT editor is entered with the file to be edited set according to the
project. All EDT editor conands can be used on this file. The file is
either the project report file (this is the default) or the project trace
file. See section 13.3 for a brief discussion of relevant EDT text editor
commands.

5-13

V.1%'

we, .'

.

AISIM READY / END

5.8 RETURNING TO VAX/VMS READY LEVEL

To return to the VAX/VMS Ready level from the AISIM READY level, the user
types the conand:

END

The system will return to the VAX/VMS Ready Level and the screen will
display)1

.0

5-1

I.

.,
'-.

.a

- Il

5-14 N

.. :

-yy 7" 7.; -

I

AISIM READY / FILMAN

5.9 CREATING AND EDITING AN INPUT FILE FOR THE READ PRIMITI'VE

The FILMAN camnand is used to invoke the File Management User Interface (FTI)
in order to create or edit a file which will be used during a simulation r.;
as input to the simulation. The FTJI is accessed from the AISIM READY level by I
issuing the following cmnand:

FILMAN FILE(filename) [ERRCHK(project)] [TERM(terminal)]

F F(filename) [E(project)] [T(terminal)]

where:

FILE(filename) is a mandatory parameter indicating the name of the file to be
used during the current FUI session.

[ERRCHK(project)] is an optional parameter indicating a database to be used to
error check data being entered into the file.

[TERM(terminal)] is an optional parameter indicating the type of terminal the
user is logged on to. If omitted, the terminal type is assumed to be the last
terminal type specified in a previous AISIM READY or LIBRARY READY level
command. The valid terminal types are the following:

HP - HP2647A or HP26478A terminal
HP23 - HP2623 terminal
TEK - TEK4105 terminal
VT - VTl00 terminal with Selanar graphics

The following is displayed after this command is entered:

CURRET PARAMETERS IN EFFECT:
VERSION: PRODUCTION VERSION 5.0
TERMINAL: Terminal type specified in cormand or default

FILE: File specified in command
ERRCHK: Project used for error checking '8
USER: userid
ENTER YES - PFDCEED, NO TO ABOIT... i

A "yes" response will cause the FUI to be invoked. The FJI prompt (*) will
appear when the system is ready to accept commands. These comnands are
discussed in section 12. A "no" response will abort the corand.

The file data is storedN in a file called filenzme.TFXT. The error check
project is a desig-n database called project.DBF.

5-15

J",

AISIM READY / GENLIST

5.10 CREATING A MODEL LISTING

The GENLIST command is used to produce a listing of a model without having
to enter the AUI level and perform a complete translation of the model. .1
The listing is identical to the Initialization Report section of the
output report (see the section on AISIM Simulation Results Reporting).
Elements of this report are:

1) Global Constant Definition

2) File Definition

3) Table Definition

4) Global Variable Definition

5) Item Definition

6) Queue Definition

7) Resource Definition

8) Architecture Legal Path Definition

9) Action Definition

10) Process Definition

11) Load Definition

12) Scenario Definition

To obtain a listing, the user types:

GENLIS' [PROECT'(project)] [NOX1ATE] [TERM(terminal)]

GLIST [P(project)] [NJ [T(terminal)]

where:

[PRXTECT(project)] is an optional parameter specifying the project
database for which a listing is desired. If omitted, the project is
assumed to be the last project specified in a previous AISIM READY level
command.

[NOXLfE! is an optional parameter indicating that the listing of the
model will be fr(n a previous translation of the model. If this parameter
is omitted, a translation will be performed. (The translation listing is
stored in a temporary file; the usr's current translation file, if there
is one, is not affected by this procedure.)

5-16

I5

* - .. % % ,- . % .. ". . • .. % '.

[TERM(terminal)] is an optional parameter indicating the type of terminal U
the user is logged on to. If omitted, the terminal type is assumed to be
the last terminal type specified in a previous AISIM READY or LIBRARY
REA)Y level commnd. The valid terminal types are the following:

HP - EP2647A or HP2648A terminal '.

HP23 - HP2623 terminal
TEK - TEK4105 terminal
VT - M00 terminal with Selanar graphics

The system responds with the following:

CURRENT PARAMETERS IN EFFECT:
VERSION: PRODUCTION VERSION 5.0
TER i N AL: Terminal type specified in command or default
PROaJECf: Project specified in coriand or default I
USER: Userid

XLATE/NOXLATE: XLArE/NOXIATE, depending upon command
ENTER YES TO PROCEED, NO TO ABORT... I.

A "yes" response will cause the listing to be created and a copy to be
automatically printed. A "no" response will abort the command.

The listing is stored in a file named project.LST.

R.S

'5-1

"'"o'.#

.¢5

S

5-1 7 " i'

AISIM READY / HCOPY

5.11 HARDCOPY OUTPUT OF THE PROCESS FLWCJHARTS P.:

Hardcopy graphics of Process flowcharts are obtained in the Hardcopy User

Interface (HUI). The HUI is accessed from the AISIM READY level by
issuing the following command:

HCOPY [PROJECT(project)] [TERM(terminal)]

HC [P(project)] [T(terminal)]

where:

[PROJECT(project)] is an optional parameter indicating the project
database with the Processes of interest. If omitted, the project is
assumed to be the last project specified in a previous AISIM READY level
command.

[TERM(terminal)] is an optional parameter indicating the type of terminal
the user is logged on to. If omitted, the terminal type is assumed to be
the last terminal type specified in a previous AISIM READY or LIBRARY
READY level command. The valid terminal types are the following:

HP - HP2647A terminal
HP23 - HP2623 terminal
TEK - TEK4105 terminal

The system will respond with the following:

CURRENT PARAMETERS IN EFFECt:
VERSION: PRODUCTION VERSION 5.0
TERMINAL: Terminal type specified in the ccmmand or default
PROJECT: Project specified in cormand or default
USER: Userid
ENTER YES TO PROCEED, NO TO ABORT...

A "yes" response will cause the HUI to he invoked. 'he system will then
pr(rpt the user for all required inform tion (see section 9 on the HIT). A
no" response will abort the command.

Note: This function is not available on %71100 or HP2648A terminals.

N
5--8

5.;,

- ~L.&~ -~ k %~5.,,

ILA.T .. 7. ., 11I N V _K *.L W. i' k- '4w1 -l x TRW

After you have located the help information you wanted and prior to
terminating your initial request for help, the system will prompt you foranother topic. The help topic initially is the AISIM function you invoked

help from. You can continue to view information on this topic-name by simply
entering another subtopic path. Information on other AISIM functions, AISIM
modeling concepts, and user-supplied instruction can be obtained by changin
the help topic. You can change the help topic by typing the special character
"@" followed by the new top level HELP topic and the topic-name. Once again
you can specify a subtopic path to the information you want. If you are not
aware of the topic-names under a specific topic, entering the topic parameter
will display a message listing the possible topic names.

N.

4.1

5-20"

3 I
0 .4

5.13 INITIATING A HELP EDITOR SESSION

The Help database is accessed using commands available in the Help Editcz

Interface (HEI). The HEI is entered by issuing the command:

HEI [TERM(terminal)]

HEI [T(terminal)]

where: A

[TEM(terminal)] is an optional parameter indicating the type of terminal the

user is logged on to. If cmitted, the terminal type is assumed to be the last
terminal type specified in a previous AISIM READY or LIBRARY READY level
command. The valid terminal types are the following:

HP - HP2647A or HP2648A terminal
HP23 - HP2623 terminal
TEK - TEK4105 terminal
VT - VTl00 terminal with Selanar graphics

The following is displayed after entering this command: I

CURRENT PARAM rERS IN EFFECT:
VERSION: PRODUCTION VERSION 5.0 ON

TERMINAL: Terminal type specified in the conuand or default 0%
PROJECT: Project specified in a previous comand or undefined

USER: Userid
ENTER YES TO PROCEED, NO TO ABORT...

A "yes" response will cause the HEI to be invoked. The HEI prompt (*) will be
displayed when the system is ready to accept commands at the HEI sublevel. A
"no" response will abort the command.

5-21 .

%.

AISIM READY / LIBRARY

5.14 EXERCISING THE LIBRARY FACILITY

The Library User Interface (LUI) allows the user to do the following:

1. Move entities fron a model project database into a storage area

called a "buffer".

2. Move entities from a "buffer" into the database of another model 70

project.
%

3. Move entities from a "buffer" into a library of model entities.

4. Move entities fron a library to a "buffer".

5. Convert a version 3.0 or 4.0 project database to a version 5.0

compatible project database

The LUI is entered by issuing the command:

LIBRARY

LIB

The system will respond with the prompt: II
LIBRARY READY

and the user may invoke any of the LUI sublevels listed in the LUI Command

Surmmary (see section 10). .d

5-22

AISIM READY / LIST

5.15 LISTING THE CURRENT PARAMETERS

To list the current parameters in effect, type the following command:

LIST

L

rne system will display the current parameters in effect, including PRUJECT,

USER, VERSION, and TERMINAL.

'Pak

I

1

° .

I

5-23 "

,\.

W-AWV%11.I% Y-

AISIM READY / LISTON

5.16 LISTING THE COMMAND PROCEDURE LINES

If a user is having problems from the AISIM READY level or LIBRARY READY
level which may stem from missing system files or an operating system
problem, the user can set a flag so that all of the files which control
the execution of an AISIM session will be displayed as they are executed.
This flag is set by typing the following command:

LISTON

Mien this option is in effect, all VAX/VMS ccmmnds which set up an AISIM
session will be displayed at a user's terminal as they are executed.
Viewing the ccnmands as they execute may help a user determine where a
problem is occurring.

a-

5-24

< ;".,

AISIM READY ./ LISTIOFF

5.17 DISABLE THE LISTON OprIONS

In order to disable the LISTON option, i.e., to inhibit the displaying of

VAX/VMS commands as they are being executed, type the following command:

LISTOFF

This comand disables the command listing mode initiated by the LISTON

command. I

5-25

zLZ ':I

.JF

AISIM READY / MSGOFF

5.18 DISABLE AISIM MESSAGES

Upon invoking each AISTM function, the user is presented with the current
version, terminal type, project, etc., and asked if (s)he wants to
continue or abort. These messages and prompt can be suppressed by typing
the following command:

*~When the user invokes a function, control will be transferred directly to
that function without further prompting.

,JI

.2

' .

r%
1

[5-26 "

.,* °

.

-'% *t,.
.

a-, AISIM READY / MSGON

5.19 DISABLE MSGOFF FEATURE

If the user has disabled the AISIM messages and pronpts via the MSGOFF
command, the messages and prompts can be turned back on via the following
command:

MSGON

Following this caTnnand, the user will receive the version, terninal type,
proiect, etc. messages and prompt to continue whenever an AISIM function

- is invoked.

-'

P '0

C:7

-a'

5-2

#.4 .4 "..'p-.. .,,' I-,,,' ' - . - . ,% % - % - •. .

AISIM READY / PRINT

5.20 PRINTIN OUTPUJT REPORTS

To request printing of the model output report, type the following
command:

PRINT [PROJECT(project)]

P [P(project)]

where:

PROJOCT(project) is an optional parameter indicating which project's
report file is to be printed. If omitted, the project is assumed to be
the last project specifiei in a previous AISIM READY level cowmmand.

Result:

The output report (project.PRF) of a project is printed. This is a report I
of the standard results of a simulation run.

NOTE: The output report is automatically printed at the coriclusion of an
Analysis session.

%°

.

-.

',

5-2-

AISIM READY / REPLOT

5.21 INITIATING A REPLOT SESSION

The Replot User Interface (RUI) allows the user to display plots which
were saved during previous Analysis sessions. The command to invoke the
RUI is as follows:

REPLOT [PROJECT(project)] [TERM(terminal)]

R [P(project)] [T(terminal)]

where:

[PROJECT(project)] is an optional parameter indicating the project
database used in creating the saved plots. If omitted, the project is
assumed to be the last project specified in a previous AISIM READY level
command.

[TERM(terminal)] is an optional parameter indicating the type of terminal
the user is logged on to. If omitted, the terminal type is assumed to be
the last terminal type specified in a previous AISIM READY or LIBRARY
READY level cczrnand. The valid terminal types are the following:

HP - HP2647A or HP2648A terminal
HP23 - HP2623 terminal
TEX - TEX4105
VT - VT100 terminal with Selanar graphics

The system will respond with the following display:

CURRENT PARAmETERS IN EFFECT:
VERSION: PRODUCTION VERSION 5.0

TERMINAL: Terminal type specified in command or default
PROJECT: Project specified in command or default
USER: Userid
ENTER YES TO PROCEED, NO TO ABORT...

A "yes" response will cause the system to complete the transfer to the
RUI. The RUI prompt (S) will be displayed when the system is ready to
-iccept c(xtnands at the RUT sublevel. A "no" response will abort the command.

5-29

-- J

AISIM READY / RESTORE

5.22 RESTOR1G A DATABASE (AFTER A CATASTROPHE HAS OCCURRED)

This ccmnand is used in conjunction with the BACKUP command. If the user
was editing the original database and had issued a BACKUP command against
this database, then a copy of the original database exists. The RESTORE
command causes the damaged original database to be replaced with this

backup copy.

To restore a previously backed-up database (only necessary if a
catastrophe has occurred which altered the project database, or it is

desirable to restart a model from a known configuration), enter the
following command: i

RESTORE [P!UJECr(project)]

RESTORE [P(project)]

whe re :

[PRUJECT(project)I is an optional parameter indicating the previously .

backed-up project database to be restored. If omitted, the project is
assumied to be the last project specified in a previous AISIM READY level

cammiand.

The backed-up copy of the database, called project.BCK, will be copied
onto the damaged database and will have the database name project.DBF.

5-30

I."
-) .5 , *

SECTION 6

DESIGN USER INTERFACE (DUI)

The DUI and its lower levels are used to define a model by creating,

modifying, or deleting AISIM model entities. The Action, Constant, Item,
Load, Process, Queue, Resource, Scenario, Table, and Variable entities are
created and edited at the DUI level, using the EDIT command. The descriptions
of File entities can be modified using the EDIT ccmmand. The Process entities
which represent operations in the modeled system are created and edited at a
sublevel of the DUI level called the Process Editor Interface (PEI). The PEI
is invoked by issuing the EDIT command (at the DUI level) and specifying a
Process as the entity to be edited. A system architecture and its related
Legal Path Table, nodes, and links are defined in a second sublevel of the DUI
called the Architecture Design Editor (ADE). The ADE is invoked by issuing
the ARCH command at the DUI level.

AISIM has a restricted character set for all data entered into a model. Only
the characters A-Z, 0-9, "$" (dollar sign) and " " (underscore) may be used
for model entity names and parameters. Any time the user places an invalid
character in a name or a form field, the user will be requested to correct the
invalid character. Any printable characters are allowed in "ccmment" and
"description" fields of forms and in user-added help text (see section 11.2).

When creating and editing entities in the DUI level, the system prompts
the user for further information by use of forms. Each form specifies the
required and optional attributes of its respective entity-type. The areas
on which information is to be entered appear in "reverse video" (dark
characters on a light background), and indicate the attributes that are to
be supplied by the user.

". Each time the user presses the keyboard carriage return key, the character
cursor is positioned to the start of another designated area. The user
enters parameters requested by the form by keying in the desired
alphanumeric information. If the user changes his mind about the
parameters previously keyed in, he may alter them by merely writing over
the old information. When the user is satisfied with the contents of the
form, he inputs it to the computer by exiting the form. Below is a
ccmplete description of the use of forms.

While the user is in the DUI, all changes are made to a working copy of
the user's database. When the user issues a SAVE coimiand during or at the
end of the DUI session, the workiryj iatabase is copied back in'L ie
user's real database. This procedure enables the user to change his/her
mind about changes made in the working database and to protect the user's
real database in case the computer crashes during a DUI session.

The ATSIM DUI carmunds ice.] to input, modify, and delete enltilies fr(cn the
mnyt,;, are iKlustrated in figure 6-2 and described on the pages that
fol Low it.

6-I

01A

% , ° 7

%

USE OF THE FORMS EDirOR

This section describes the use of the forms editor on the various
terminals. Figure 6-1 is a chart which describes the keys used to achieve
specific movements through a form. Following the figure is a description
of each of the ways of moving through a form.

UP DOWN LEFT RIGHT ENTER +FIELD -FIELD

HP2647A Fl F2 F3 F4 F5 <cr> F6

HP2648A Fl F2 F3 F4 F5 <cr> F6

HP2623 Fl F2 F3 F4 F5 (cr> F6

TEK4I05 F1 I F2 F P3 F4 F5 <cr> F6

VI00 -<-> PFI <cr> PF2

Figure 6-1. Terminal Profiles

UP - If the cursor is in a block of fields, such as Resource attributes,
the cursor will move up to the field above it. If the cursor is in a
single field or at the top of a block, the cursor will move to the end of
the next field above it. If there are no fields above it, the cursor will p
wrap to the end of the last field in the form.

DOMa - If the cursor is in a block of fields, such as Resource attributes,
the cursor will move down to the field below it. If the cursor is in a
single field or at the bottom of a block, the cursor will move to the
beginning of the next field below it. If there are no fields below it,

the cursor will wrap to the beginning of the first field in the form.

LEFT - The cursor will move one position to the left in the current field.
If the cursor is at the beginning of a field, it will move to the end of
the orevious field. If the cursor is at the top of the form, it will wrap
to the end of the last field in the form.

RIGHT - The cursor will move one position to the right in the current
field. If the cursor is at the end of a field, it will move to the
beginning of the next field. If the cursor is at the end of the form, it
will wrap to the beginning of the first field in the form.

ENTER - Exit the form and send the data in the form to be processed by the
AIS[M system.

6-2
** .,

DOT IO113 ND O.

DESIG (0) DESIN OBTERMNATE

,E,,TA.

DESICOP (0) AN!G 08 TcT!N4C.

EPITIT-

DELET (DE) ATN* A

ENTITY

EA.

EDIT E) CHNGE A

*ENTIT

ACCESS

I.,

h(U ~~~~~~ ~~~ ~ ~ ~ V 9.e" ~w~~I7wwy p- ~~- ~.v

I

6.1 DUI COMMAND SUMMARY

Figure 6-3 contains a summnary of the DUI level commrands.

A1WH
A

COPY j nit-ye eitn-ae nw-ar-
C

DELETE !entity-type1ijentity-nam i/*
DEL

EDIT ientity-type , lentity-nanei, [OLD/NEW]

END

HELP (subtopicl,...,[subtopici
HELP [@topic] ,[topic-n-anmI,[subtopic] ,...,(subtopicl

LIST]entity-typej
L '.'

SAVE

UNITS [units-type!
U

Figure 6-3. DUI Commuand Summary

6-5

DUI / ARCH

6. .1 DU CCMMAND: ARCH

The ARCH cormnand is used to invoke the Architecture Design Editor (ADE).

This cormand is valid only in the DUI Ready Level.

COMMAND SYNTAX:

A

FU TION RESULT:

The ADE is invoked so that the architecture is built under the project
designated by the DESIGN command. A "#" prompt is provided for the user to
input ADE comands. These commands are discussed in section 6.3.

%'

6-%

'py

'p.

'%

6-6 .:

,:5p

'"VP PS.

L wJ i-i= ' ' L : iL ,.. v' J. r - , -: x , '
. ' . rv' .= . . ,' . j .. ,. y . , .. . / . . _ ,., _ y ,. . ,

DUI /COPY

6.1.2 DUI COMMAND: COPY

The COPY comnd is used to create a copy of an existing entity.
V

CcMAND SYNTAX:

COPY [entity-typel , existing-namel Inew-name

C

where:

!entity-typej is a required parameter indicating any valid entity type.

Entity-type may be any of the following:

Entity-type Acceptable Abbreviation

Action A

Constant C

Item I

Load L

Process P

Queue Q

Resource R

Scenario S

Table T

Variable V

[existing-namej is a required parameter identifying the existing entity whose
parameters are to be duplicated.

inew-namej is a required parameter which specifies the name of the new entity
whose parameters are duplicates of the "existing entity".

If entity type, existing-name or new-name is missing or invalid, the user
is prompted.

A carriage return entered in response to any prompt aborts the command and
returns the user to the X1 Ready state - * prompt.

6-7

DUI / DELErE

6.1.3 DJI COMMAND: DELETE

The DELETE command is used to eliminate a named entity of a given type

from the user database. A restriction on the use -)E this command is that

Resources associated with architectural nodes or links cannot be deleted
outside of the Architecture Design Editor sublevel.

COMMAND SYNTAX:

DELETE [entity-typej, entity-nameI

[entity-type , entity-namre ,..., [entity-name I

Jentity-typeI, *

DEL

where:

Jentity-typej is a required parameter indicating any valid entity type.
The valid entity types are listed in section 6.1.2.

Jentity-namej is a required parameter indicating the name of the entity to
be deleted. It is permissible to give a list of entity-names, of the same

type, each member of which is separated by a comma.

is a parameter used indicate all of the entities of the specified type

are to be deleted.

If entity-type or entity-name is missing or invalid, the user is prompted

for a valid parameter.

A carriage return in response to the prompt aborts the command, and the
user is returned to the DUI Ready state - * prompt.

FUNCTION RESULT:

if the named entity is not a Resource associated with a architectural node
or link, the entity will be deleted from the user's working database. If

the entity is a Resource associated with a node or link, the user will be

given the message:

entity " IS ASSOCIATED WITH THE ARCH. AND CAN ONLY BE DELL:"ED IN THE ADE

where " entity " is the name of the entity to have been deleted.

When there is more than one such Resource listed in the command to delete

the user will be given the above message for each one.

6-8

%W~L~i~vv -. '" ..-- KY W- . Kj - T-w N N 'V - V*.,V.- ..y~*

DUI /EDIT

6.1.4 DUI COMMAND: EDIT b

The EDIT comiand is used either to create an entity, or to change an

existing entity.

COMMAND SYNTAX: I
EDIT [entity-types, [entity-names ,[OLD/NEW]EN

where: to
I I

entity-typej is a required parameter indicating any valid entity type.

The valid entity types are listed in section 6.1.2 and additionally include
"File" .

Jentity-nameI is a required parameter indicating the name of the entity to
be edited. (

[OLD/NEW] is an optional parameter indicating that the named entity is tobe created (NEW), or that the namved entity exists (OLD) and is to be.

changed. If the OLD/NEW] parameter is entered incorrectly, the user is

prompted for confirmation to continue the command. The default for this

parameter is OLD.

FUNCTION RESULT:

If the entity-type specified is Process, the PEI level (see section 6.2)
is automatically invoked. If any other valid entity type is specified,
the user is presented with a form to describe that entity. The forms for
the entities are shown in figures 3-1 through 3-4, 3-6 through 3-8, 3-42, and
3-44. The user must fill out the form to input the completed entity into the
working database. The user is then returned to the DUI Ready state - *
prompt.

6-9

NP

DUII / END

6.1.5 DUI COMMAND: END

The END cotmnand is used to terminate a DUI session.

CCMMAND SYNTAX:

END

FUNCTION RESULT:

The Design session is ended. The working database is closed. If a SAVE
command has not been given since the last EDIT ccmmand, the user is asked
if the working database is to be saved. The query is:

SAVE (Y/N)?

If the user answers "Y", the working database is saved into the real
database and the session is ended. Control is passed to the AISIM READY
level (level 3). If the user answers "N", the session is ended and the
working database is not saved. Control is passed to the AISIM READY level
(level 3). Depressing the RETURN key in response to the SAVE query aborts
the END ccmiand, and returns the user to the DUI Ready level - * prcmpt.

6-10

6-10

-:I

.~'p ' ,.. .-. ,a.-~sO .*, '% r *%~.. *~. * **** * % ".

.,.-..

-1 w
x4

tde

DUI /HELP

6.1.6 DUI CCMMAND: HELP_-

The HELP ccmnand provides the user with access to help information about the
current DII interface and about other aspects of the AISIM system.

COMMAND SYNTAX:%

HELP [subtopic],...,[subtopic]

HELP [@topic] ,[topic-na e] ,[subtopic],... ,[subtopic]

where:

[subtopic] is 3n optional parameter indicating the name of a subtopic about
which the user would like information. Successive subtopics contain more
detailed information.

[@topic] is an optional parameter indicating that the top level topic should
not be the current function but should be as specified. Available HELP topics
are: -

topic Acceptable Abbreviation

FUNCTION LEVEL F -

CONCEPf C
GUIDELINE G , .
P O C EDU RE P "<.
NOTE N

[topic-name] is an optional parameter indicating the n,_ for the new top

level topic.

FUNCTION RESULT:

if no path is specified, help information on the DUI function is displayed.
The commands acceptable at the current DUI level of operation are listed as
subtopics indicating that further help is available on them. HELP with no

path specified displays the DUI help message toxt and available subtopics,
followed by the prompt:

Subtopic?

It you type in a subtopic name, a HELP message on the subtopic will e
displayed. If one or more subtopics exist at this level, HELP will prompt you .
fo- another subtopic allowing you to see additional help information.
Pressing a <cr> will terminate your descent for additional elp.

If you know precisely what information you need, you can access it direcLiy by
includinj a path parameteOr which specifies the subtopics to move down through
to locate the help message. Each subtopic listed in the path must be
separated tro the previous by a comma.

6-11
NW
%

I

After you have located the help information you wanted and prior to
terminating your initial request for help, the system will prompt you for

another topic. The help topic initially is the AISIM function you invoked I

help from. You can continue to view information on this topic-name by simply

entering another subtopic path. Information on other AISIM functions, AISIM

modeling concepts, and user-supplied instruction can be obtained by changing

the help topic. You can change the help topic by typing the special character

"T" followed by the new top level HELP topic and the topic-name. Once again -.

you can specify a subtopic path to the information you want. If you are not

aware of the topic-names under a specific topic, entering the topic parameter . ,

will display a message listing the possible topic names.
.. ,J

%

6- 12

........

DUI / LIST

6.1.7 DUI CCMMAND: LIST

The LIST cmand displays all entities of a specified type. Included with
each entity is its name and description.

C'C!MAND S YxNIAX:

LIST jentity-type.

LI

where:

ientity-typej is a required parameter indicating any valid entity type.
The valid entity types are listed in section 6.1.2 and additionally include
"File".

If Jentity-typej is missing or invalid, the user is prompted for a validenti y type. S

A carriage return entered in response to the prcinpt aborts the comrmand,
and the user is returned to the DUI Ready state - * prcnpt.

FUNCT ION RESULT:

The user is presented with a list of all existing entities of the ..
requested type.

6-13

S' '.

~ ~~ ** ~* ~ **~**~* * *~*~J** . % . -

p;,i

DUI /SAVE

6.1.8 DUI COMMAND: SAVE

The SAVE ccmmand copies the contents of the working database into the
user's permanent database.

COMMAND SYNTAX:

SAVE

FUNCTION RESULT:

The real database is replaced with the contents of the working database,
and the user is returned to t>e DUI ready state - * prompt. The command
is useful whien the user is defining a large system. With the SAVE command
the user saves the model design up to the point at which the command is
given. This protects that portion of the design from computer failures.

'J1

6-14

DUI / UNITS

6.1.9 DUI COMMAND UNITS

The UNITS ccimwand is used to set the default time units that will appear in
the forms for Load and Scenario entities and Action Primitives created aft -

this command is issued.

CCMMAND S YNTAX:

UNITS Junits-type l

U

where:

Junits-typej is a required parameter indicating the units to be used. The
valid units and unit abbreviations and their meanings are as follows:

Command entry meaning N

nseconds (ns) - nanoseconds
useconds (us) - microseconds
mseconds (ms) - milliseconds
seconds (s) - seconds
minutes (m) - minutes
hours (h) - hours
days (d) - days

FUNCTION RESULT:

The default time units used in Load, Scenario, and Action Primitive forms will
be set to the entered value.

I

6-15

~m' .'

6.1.10 Termination of a DUI Session

As mentioned earlier, a DUI session is terminated by issuing the END command.
Syntax and results are described in the preceding section. The DUI session is
ended. The working database is closed. If a SAVE command has not been given
since the last EDIT comand, the user

is asked if the working database is to
.J-

be saved. The query is:

SAVE (Y/N)?

If the user answers "Y", the working database is saved into the real
database and the session is ended. If the user answers "N", the session
is ended and the working database is not saved. Depressing the RE rURN key
in response to the SAVE query aborts the END command, and returns the user
to the DUI Ready state. Wen the SAVE query is answered, control is
returned to the AISIM RUADY level and the AISIM READY prompt is displayed.

6-1I

. .,

-

6 16

6-16

%' ° .'' "W , - ' ' " " '4'W" " , ,€ W"-" W -" " " " " . . . * "•I

There are two modes in the PEI: DRAW and NODRAW. Under DRAW mode, all

changes to Primitives on the screen are reflected in the display. Under

NODRAW mode, changes are not reflected in the display until the user

explicitly requests that the display be updated. When the user first enters

the PEI, DRAW mode is the default. If the user changes the mode, the change

will stay in effect for all subsequent uses of the PEI until changed by the

user or the user exits the DUI. These modes are explained more fully in the

PEI DRAW anl NODRAW commands (sections 6.2.6 and 6.2.11).

BOTIOM B

CHANGE 1positionj
C

DELETE Ifirst positionrLnumber of consecutive positions]

DEL

D X

DRAW
DR

END

E

HELP [subtopicl,...,[subtopicl
HELP [@topic] , [topic-name] ,[subtopic],. .. , [subtopic]

HOLD jposition.
H

MENU
M

NODRAW

N

PLACE lPrimitivcK,[position]
p

* RE[RAW a

RED

Figure 6-4. PEI Comand Sumrury

6-18

..-.. ' ' **%%~* % ~ ~ ..~ ~ **~* ~ lop,

7-77-T..

TOP

Ir
UP [number of positions]

Figure 6-4. PEI Conmnd Sumiary (cont'd)

*- %

Or,

6-19

PEI/ BOTrOM

6.2.2 PEI COMMAND: BOfI'OM

The BOTTOM comand is used to display the last six Primitives in the current
Process structure.

COWMAND SYNTAX:

-p .1 BOTIICtI

'o B

FUXTION RESULT:

The bottom of the Process structure being edited is drawn fran the END
symbol up. The END symbol is always the last position of a Process
strucLure.

6-2ot

ft.%

-.<t

6-2w

'-f

Sr " 'r ' " V ' # + ' . ' f . ' , ' ' , - , ' " - ." . - " " " " + " " - " - " . - " - %

PEI / CHANGE

6.2.3 PEI COMMAND: CHANGE

The CHANGE camnand is used to modify the user defined parameters of a

Primitive within the current Process structure.

CO1MND SYNTAX:

CHANGE Jposition1

C

where:

Jpositionj is a required parameter indicating the position of the

Primitive, within the Process structure, whose parameters are to be
changed.

FUNCTJION RESUUM:

When the CHANGE conmand is invoked, the user is presented with a form
corresponding to the Primitive at the indicated position. The user may
change any or none of the attributes of the Primitive. If the user is in
DRAW mxe, the Process structure is then redisplayed with any changes made;
otherwise, the screen remains unchanged. If the changed Primitive was not on
the screen, it is redrawn at screen position three. If the user is in NODRAW
mode, the top of the display is set to be two above the changed Primitive, but
the Process is not redrawn.

%

6-2] .5

PEI / DELETE

6.2.4 PEI COMMAND: DELETE

The DELETE comand allows the user to delete a single Primitive, or a
range of Primitives, from the current Process structure.

CD1MAND SYNTAX:

DELETE [first position],[number of consecutive positions]

DEL

where:

Ifirst position3 is a required parameter indicating the position of the
first Primitive to be deleted.

[number of consecutive positions] is an optional parameter indicating the
number of consecutive positions to be deleted, starting with the Primitive
indicated by the [first position] parameter. If this parameter is
omitted, the default condition is to delete only the Primitive at the
position indicated by the [first position] parameter.

FUNCTION RESULr:

The Primitives indicated by the Ifirst positionj parameter and the
optional parameter are deleted from the Process structure. The START and
the END symbols may not be deleted. Additionally, the numbers of all
Primitives being deleted must be displayed on the screen.

If the user is in DRAW mode, this simply means that the Primitives to be
deleted must be visible. If the user specifies to delete Primitives past
the end of the screen, only the Primitives on screen will be deleted.
After the delete conmand is issued, the remaining Primitives in the
structure are scrolled up.

If the user is in NODRAW mode, the numbers of the primitives being deleted
must be on screen, but not necessarily the symbols themselves. For
example, say the first six Primitives are being diSplayed and the user
deletes Primitives three through six. Since tlhe legend still shows three
through six, the user can delete the new third through sixth Primitives
even though the sydols on screen may not correspond to the Primitives
being deleted. The user should take care when deleting Primitives while
in NODRAW mode. If the user specifies to delete Primitives whose numbers
are past the end of the screen, only the Primitives whose numbers are on
screen will be deleted.

6-22
fI

fU

I.<

PEI / [W)N

6.2.5 PEI CO 2-MD: XWN

The DOM ccmand allows the user to "jump down" the current Process
structure an indicated number of positions.

COMMAND SYNTAX:

DOWN [number of positions)

D

where:

[number of positions] is an optional parameter indicating the number of
positions that the structure is to "jump down". If this parameter is not
used, the default condition is to drop the Process structure down six
Primitives, which is analogous to displaying the next page.

SFUNCTION RESULT:

/ The Process structure jumps down the number of positions indicated by the
optional parameter, if given. Otherwise the structure jumps down six
Primitives or to the bottom of the structure if less than six Primitives
follow the last position currently displayed.

6.2

o-23

' I

PEI / DRAW

6.2.6 PEI COtIAND: DRAW

The DRAW command is used to put the user in the PEI DRAW mode.

CaMAND SYNTAX:

DRAW

DR

FUNC I LON RESULT:

fhe DRAW command sets the PEI mode to DRAW mode. This mode will remain in
effect for all future PEI sessions during the current DUI session until
changed by a NODRAW command.

In DRAW mode, all changes made by a user will be reflected in the display.

I.e., if a Primitive is changed via the CHANGE command, that Primitive will be
redrawn on the screen. If Primitives on the screen are deleted, remaining
Primitives will be scrolled up to fill the display.

6-24'

N V W4

- .. -0 *0- ''.' W i'' - * lr~r -il

PEI /END ""
6.2.7 PEI CCMAD: END•'

The END ccm-nand is used to terminate and exit the PEI session.-.%

CC:: 'ND SYNTAX: -,

'I

%

ENDEI/N

E

FUNCTION RESULT: .1
The PEI session is ended, the graphics display is erased, and the user isreturned to the DUI Level.

S

.a'..

%-'.

a- .%"

.'..x

6-25'

-.., .

i%

'>1

PEI / HELP

6.2.8 PEI COMMAND: HELP

The HELP command provides the user with access to help information about the
current PEI interface and about other aspects of the AISIM system.

COMMAND SYNTAX:

HELP [subtopic],...,[subtopic]

HELP [@topic] , [topic-name] ,[subtopic],..., [subtopic]

where:
i

[subtopic] is an optional parameter indicating the name of a subtopic about
which the user would like information. Successive subtopics contain more
detailed information.

[@topic] is an optional parameter indicating that the top level topic should
not be the current function but should be as specified. Available HELP topics I-5.

are:

topic Acceptable Abbreviation

FUNCTION LEVEL F
CONCEPT C
GUIDELINE G
PROCEDURE P
NOTE N

[topic-name] is an optional parameter indicating the name for the new top

level topic.

FU NTfON RESULT:

ift no path is specified, help information on the PEI function is displayed.
The ccmiands acceptable at the current PEI level of operation are listed as
subto)pics indicating that further help is available on them. HELP with no
path specified displays the PEI help message text and available subtopics,
followed by the prompt:

Subtopic?

If you type in a subtopic name, a HELP message on the subtopic will be
d1 splayei. if one or more subtopics exist at this level, HELP will prompt you
for another subtopic allowing you to see additional help information.
Pressing a <cr> will terminate your descent for additional help.

It you know procisely what inforrtion you need, you can access it directly by
including a)ath parjutier which soecifies the subtopics to move down through
to locate the help mes:3,jc. "ach subtopic listed in the path must be
separ-i,. i frrn the previous b! a comma.

6-26

5%4

%

After you have located the help information you wanted and prior to
terminating your initial request for help, the system will pronpt you for
anoter topic. The help topic initially is the AISIM function you invoked

help from. You can continue to view information on this topic-naea by simply
entering another subtopic path. Information on other AISIM functions, AISIM 'P
modeling concepts, and user-supplied instruction can be obtained by changi:
the help topic. You can change the help topic by typing the special character
"@" followed by the new top level HELP topic and the topic-name. Once again
you can specify a subtopic path to the infornation you want. If you are not
aware of the topic-names under a specific topic, entering the topic parameter
will display a message listing the possible topic names.

6N

Ai]

S, '

S ,

'.2'w

Sc',

?,.

..) .

i~u -".," >',;"; - " "_. ,-; -' :" " " " "" ... " " " " "'" "'" " . . . "-...

PEI / HOLD

6.2.9 PEI COMMAND: HOLD

The HOLD ccmand allows the user to insert any valid Primitive, which is

already a part of the current Process structure, into the menu item "HOLD"
so that it may be replicated.

COMMAND SYNTAX:

HOLD Ipositionj

H

where:

Jpositionj is a required parameter indicating the position of the

Primitive which is to be placed in hold for the purpose of replication.

FUNCTION RESULT:

The Primitive (complete with the previously defined parameters) is placed

in HOLD. This item may then be replicated by using the PLACE comand and

using HOLD as the Primitive to be placed. ,When a Primitive is stored in
HOLD, it remains there, accessible to the user throughout the DUI session,
and thus Primitives may be moved fron one Process to another. When there
is a Primitive in HOLD on a terminal on which the menu can be displayed

(see MENU command), the name of the Primitive being held appears below the

menu display area preceded by an asterisk (example: *CREATE).

6-28I- N

PEI / ME'NU

6.2.10 PEI COPNLAND: MENU 6

MENU is used to display the possible Primitives for a Process.

CC4MAND SYNTAX:

MENU 0

M

FUNCTION RESULT:

The menu is a one-column list of names of the valid Primitives (see 0
section 3.9 for a descciption of the Primitives). If the menu will fit on
the screen, it is displayed to the left of the Process flowchart. If the
menu will not fit on the screen, a message will be displayed notirnj that
fact. The menu can be displayed on HP2647A, HP2648A, and TEK4105 4-

terminals. Figure 6-5 shows the Process menu.

TF-ri'- MITTIHG r'MESS 4E. TO RE:E £ ,EE

ATrSTART > %" S-l"STMTI; hl4'..

PLLI-C TPAH:. iT .?O

B5PHN.- H -,
C L L A L : ,- ,F. -corLLEH / ALL,: I UF I44

CCrrE'4T -1)/
C 1iF- E -I r 1 U T,,
CFE.TE .LLCiC TE EI.,FI \FFTIAL SFRI ?FT, ..
DEALLoI:c %
Ecr , , b ____I ________ ___ _

FE •
E PE P LH. E4.4

FILE INITPO[,LUCE MSIG INTO S',' TEN '•

F HDF~

LOI]Y\ x '.%

P '
LET EUAL

Figure L-5 Prces isly it MF EW"EALPHA.4'.%

FE-:."T'",'

"SE: ,r. EU L ~LFPH , t ,r,':.

TE :"I
TPAL T !,LF C

6-29
I-%.

J I "I I - S

.* $ I. . . %q.] •.Yi?? ,." I ? S.~ A.!* ~ 4

PEI / ADDRAW

6.2-11 PEI COMMAND: NODRAW

The NODRAW command is used to put the user in the PEI NODRAW mode.

COMMAND SYNTAX:

NODRAW

N

FUNCTION RESULT:

The NODRAW comwnd sets the PEI mode to NODRAW mode. This mode will
remain in effect for all future PEI sessions during the current DUI
session until changed by a DRAW ccmmand.

In NODRAW mcde, no changes which are made to Primitives in the Process are
reflected in the display until the display is explicitly redrawn by the
user. Cornands which can be used to update the display are TOP, BOTIrCM,
UP, DOWN and REDRAW. The user should take care when deleting Primitives
while in NODRAW mode to guard against deleting necessary Primitives since
the screen is not updated after a DELETE is perfornd.

6--0

: "U.

-Jw~ 77 - -- -7-- -.

PEI / REDRAW

6.2.13 PEI COMMAND: REDRAW

The REDRAW camand is used to ui1ate the current Process display. This
command is generally used when the user is in NODRAW mode.

COMMAND SYNTAX:

REDRAW

RED

FUW:'& ION RESULT:

This command causes the Process display to be redrawn fram the location at
which the last change was made. For example, if the last change was made at
the top of the Process, the display will be drawn from the top of the Process.
Other portions of the Process can be displayed using the TOP, BOTTOM, UP and
DOWN coamands. The REDRAW ccanand is especially useful when the user is -

deleting Primitives in NODRAW mode so the user can see what the Process really
looks like.

6-32

.-

-.

N.

N,r

'N

I p . . °I"

PEI / TOP

6.2.14 PEI COMMAND: TOP

The TOP ccmand is used to display the first six Primitives in the current
Process structure.

COMMAND SYNTAX:

TOP

T

FUNCTION RESULr:

The first six Primitives of the Process structure being edited (or the
entire Process if the structure consists of no more Lhan six Primitives)
are drawn from the START symbol down. The START symbol is always the
first position of a Process structure.

Jq

..

, .

6-33 ?.

wY.f f!%% 4\~'

PEI /UP

A

6.2.15 PEI COMMAND: UP

The UP command allows the user to "jump up" the current Process structure
an indicated number of positions.

CCMMAND SYNTAX:

UP [number of positions]

U

where:

[number of positions] is an optional parameter indicating the number of
positions that the structure is to "jump up". If this parameter is not
used, the default condition is to "jump up" the Process structure six
Primitives, which is analogous to displaying the previous page.

FUNCTION RESULT:

The Process structure jumps up the number of positions indicated by the
optional parameter, if given. Otherwise the structure jumps up six
Primitives or to the top of the structure if less than six Primitives
precede the first position currently displayed.

6-34

j.,
6.2.16 Terminating a PEI Session

Only one Process can be created or edited during a PEI session. To creat- or Y

edit other Processes or change to another level the user must terminate the
current PEI session and return to the DUI level. This is accomplished by
giving the END ccmnand described in section 6.2.7. The current working
database is left open and control is transferred to the DUI level.

6-3

.;

'

:.-5

r.5

".9.
6-35

- .

!

o 5'

I

6.3 ARCHITELCURE DESIGN EDITOR (ADE)

The ADE is used to define the layout and interconnection of the physical
aspect of a data processing network. It is not necessary to develop an
architecture model if the user wishes to model operations without regard

to where these operations take place. However, if Items are routed
through a sy°sten or if Processes at one location trigger Processes in
another, then an architecture model is necessary.

The ADE allows the user to create graphically a picture of the system
architecture by positioning symbols and connections. It also allows the
user to define the legal paths of communication between the connections
(and along the connections).

Even if a user has defined a bLegal Path Table while creating an

architecture, the system offers the option of automatically building a
Legal Path Table. The user is queried to resolve any ambiguities. The
Legal Path Table is used during the simulation to control the routing of
Items that are being passed through the system.

It is important to note that each node and link represented in the

architecture is intended to represent some system resource such as a CPU,
disk drive, tape drive, or channel. The system automatically creates
model Resources for these system Resources. The parameters of such
Resources can be altered both in the ADE--though the DEFINE cornand (see
section 6.3.6)--and in the DUI--with the EDIT command (see section 6.1.4).

Hardcopies of a created architecture can be reproduced using a graphics
device (see appendix A.4).

6.3.1 Concepts for Using ADE

This section is intended to familiarize the user with the capabilities of the

ADE so tnat he inay better understand the description of its use in sections

further below.

The view space is divided by vertical and horizontal grids. Grid lines
running vertically mark off the position and are numbered starting withzero at the left side. Grids running horizontally mark off the Y position
and are identified with numbers, starting with zero at the bottom.
Another aid to building the architecture is variable symbol size. The
user can specify the size of symbols as he positions them in the view
space. The user is provided with commiands to change his view screen
position, to position nodes which represent system Resources, to delete
nodes, and to change symbol names and sizes. A command is provided which
allows the user to specify connect ions between nodes. These connections
(or links) are defined as systenm Resources. Any two nodes may be
connected by more than one link, but there may be only one legal path
Vbetween these two nodes. (ExcepLion: When using Method A, B, or C
a.gorithms tf) dt inQ the Le .aI Path Pable, two node typs "TRY" and "UDD"

ieaf-node," and should have only one connection to one
other nxle. The architecture devlop(d using the ADE becoumes the basis

6-36

.

for generating the Legal Path Table which is used to route Items through a Isystem.

The view screen on the HP2647A terminal, for example, is approximately five
inches high by eight and one-half inches wide. This workspace is too small
for some systems. The ADE, therefore, gives the user a workspace which is
thirteen and two-tenths inches high by 20 inches wide and allows the user to
move the viewspace anywhere in this workspace to construct he architecture.
The contrast between viewspace and workspace is illustrated in figure 6-6. p

The workspace is the same size on all terminals supported by AISIM.

A|

VIE16PAC
_

'
_ -

I

Figure 6-6. Viewspace versus Workspace in ADE

,

I

6-37;.

S.

6.3.2 Use of the ADE

The ADE can only be accessed from the DUI level. The ADE level is entered

by issuing the following ccmand:

ARCH

A 0

Only one architecture is allowed per design database. This prevents the
user fron specifying an architecture structure that does not relate to the
Processes and Resources that have been defined. Experiments using common
Processes, Resources, etc. with different architectures can be run by
following the procedure listed below:

1) While in the VAX/VMS ready level or AISIM READY level, COPY the
project.DBF data file to newproject.DBF data file where: project
and newproject are names of PROJECT databases for AISIM models.

2) Enter the ADE to edit the architecture contained in Inewprojec t. DBF.

3) Simulations can now be run using the newproject database.

If there is no architecture defined in the design database, the system
will provide a blank grid on the screen and a pound sign (#) prompt for
the user to enter comnands. If an architecture has already been defined,

then the old architecture will be displayed and the user will be provided
a pound sign (#) prcmpt for entering commands.

The ADE has DRAW and NODRAW modes which are similar to the PEI DRAW and
NODRAW modes. However, if a user is logged on to a VI100 terminal, only
NODRAW is available. In NODRAW mode, the user can place and change
symbols, connect nodes, and perform all of the functions of the ADE,
exceot that the results of the conrnds will not be reflected in the
screen until the user explicitly redraws the screen with a REDRAW or %
WINDOW comand. If the user is in DRAW mode on a supported terminal, the
results of all ADE commands will be reflected in the display. The V]Il00
is always in NODRAW mode. The default for the other terminals is DRAW
nooae.Fhe following pages give a summary of commands available in the ADE and
their ise. These commands are legal in the ADE level only. -L

6-38

*~ -~'U ' 'U ~ ~ . L,,r ,

CHANGE NAM4E,jnamej,jnew-namej
TYPE, jnameI ,type~
SIZE!iname] ,lsizoj

F S

CONNECT jnoiel,nxde2j~ilinkj[_F]

DEFINE isymbo1-typei, LResource-name]
PATH,)ndelljinode2illiink1] ,.. .,(linknj DEE

DELL'Th iramej,...,[name-n]
PriH, inodeli, incxe2i

DEL

DRANW
DR

CND

HELP [subtopicl',...,[subtopicl
HELP [@topic] , topic-namel , subtopic] ... *, (subtopic]

LIST P~ftl,jnodeI] Incxde2j
LPT

VJVE Inodijx-positionl,iy-positionj
M

NODRAW
N

PLACE isymbol-typel,(node],(x-positioni,(y-position1,[size]
P

RECON Ilink] S

R -

REDRAW
RED

SAVE

WINDOW idireccionlJ , [n]I, [direcLion2] , [n]
w

Figjuru, 6-7. AD:, Command Sumnary

6-39

ADE SYMBOLS

6.3.3 ADE Symbols

Symbols used to construct an architecture are generic in nature. The

shape associated with same symbols is representative of a computer

system's hardware elements although no implicit attributes of computer

hardware elements ae given to the symbols. Attributes defined for a

symbol which make it represent an actual physical device must be defined

by the user. Attributes aLe attached to symbols by the DEFINE command.

Symbols in an architecture correspond directly with Resources. This

relationship applies to nodes and links. kl symbols which are directly

connected correspond to an entry in the Legal Path Table.

One other implied relationship applies to the symbols in an architecture.

The symbols TrY and LOD are considered to be "terminal" symbols by the

Legal Path Table. Therefore, these two symbols have a constraint that

they can be connected with only one link to one of the other symbol types.

Also, TTY and LOD symbols cannot be directly connected. These constraints

are enforced by the LPT generation not the ADE.

The complete symbol set for AISIM architecture is shown in figure 6-S.

SHOnME LEFT e, HP -

'4

4A

-,-

2 25 3~- 3e 4 4 S 5 6-6-7-- 8* NY

' Figure 6-3. Architecture Symbols~w

6-40

2 1 J-

*4~ I "

I1 I I I'4 i " : u i i] ~ , l =: - :' - . . .

ADE CHANGE

6.3.4 ADE COMMAND: CHANGE

The CHANGE comnmand allows the user to modify the name, type, or size of an

ADE symbol which represents an architecture node.

COMIA ND SYNTAX:

I
CHANGE NAME, name i, new-name l

CHANGE TYPE, [namej, jtype-

CHAAGE S[ZE,jnameIisizeI I

CHG

where:

namej is a required parameter indicating the name of the symbol which is I
to be changed. For the commands CHANGE TYPE and CHANGE SIZE, name must
designate a node.

Inew-namej is a required parameter specifying a new name for the current
named symbol where new name should be 1-8 alphanumeric characters.

ltype is a parameter specifyirng that the named symbol is to be changed

frcn its current type to "type" which is one of the legal symbol types.
The symbol types are shown in figure 6-8. I.

isizej is a required parameter specifying that the named symbol is to be
charyged trom its current size to "size" where size can be 1-20.

FUNCTION RESULT:

rhu indicated changes are made to the symbol "name". W~hen the user
Thanges a symbol type or size, there is no impact on the other parameters.
When the name is changed, the default size is the number of characters in
the n,.ne. If the user is in DRAW mode, the symbol is redrawn to reflect
tile clarYges.

%.

6-41

x.

, . , - _ ,.

ADE / CONNECT

6.3.5 ADE COMMAND: CONNECT

The CONNECT command is used to show connections between architecture nodes
by placing links between them.

COMMAND S YNTAX:

CONNECT)nodelI,1node2I,jlink][_F]

CON

where:

[nodeli is a required parameter indicating the first symbol of a from-to
pair of symbols to be connected and where nodel is 1 to 8 alphanumeric
characters.

Jnode2] is a required parameter indicating the second symbol of a from-to
pair of symbols which are to be connected and where node2 is 1 to 8
alphanumeric characters.

*linkj is a required parameter indicating the name of the connection which
is to be made and where link is I to 8 alphanumeric characters.

[_Fl is an optional parameter appended directly to link indicating that the
communication link between nodes nodel and node2 is full-duplex. The name of
the link must be no longer than eight characters including the " F" The

effect of this is to create two links, a "link A" and a "link B". Links
defined without this parameter bear a half-duplex default.

FUNCTION RESULr:

If nodel is not in the viewspace when the command is issued, the user will
be prompted with the message,

THE FROM NODE MUST BE ON THE SCREEN TO ESTABLISH CONNECT: COMMAND ABORTED:

It nodel is on the viewspace and the user is on a terminal other than a .
VI100, a cursor (+) is turned on. If the user is on an HP terminal, the
cursor appers at nodel. If the use is on a TEK4105 terlminal, the curso
appears where it was last positioned, or at the lower left coer if it
was never moved. At this point, the user has two alternatives:

1) he may cause the system to connect the two symbols with a
straight line through their centers by depressir any non-period,
alphanumeric character or,

2) he may cause the system to produce a shaped line styjmnt from .
symtxl I to symbol 2 by:

6-42

%

* 0%

a) moving the cursor using the graphics controls, to a position
where he wishes to bend the line,

b) typing a period (.),

c) repeating a) and b) until a maximum of five corners have been
created.

d) completing the line segment from the last corner to symbol 2
by entering a non-period alphanumeric character.

Alternative 2 allows the user to place symbols randomly and later show
connections that would be obscured or confusing if generated by
Alternative 1. Connections can be straightened or have corners addo]d to
them with the RECON command (see section 6.3.15).

If the user is on a VMlOO terminal, the two nodes are automatically
connected by a straight line. Bent line connections are not possible.
If the user is in NODRAW mode on a terminal other than a VTOO, the

connect command operates as stated above for DRAW mode except that the
line or line segments are not reflected on the screen. Thus the user can
still make connections while in NODRAW mode.

After a connection is defined, two entries are entered in the Legal Path
Table. The first is an entry for the path from nodel to node2 via link,
and the second entry specifies a path from node2 to nodel via link. If
link is defined as full-duplex, then the path from nodel to node2 uses
"link A", while the path from node2 to nodel uses "link B". (See section on
"Define" ccmmand). Nodel is then established as the link's from nole and
node2 is established as the link's to node. All subsequent paths using thlis
full-duplex link will use "link A" if they go in the direction of the from
node to the to node and will will use "link B" if they go in the opposite
direction. -,

r

0-43

LP A_*5

ADE / DEFINE

6.3.6 ADE COMMAND: DEFINE

The DEFINE command serves two functions. It is used to define attributes

to be associated with symbols (this allows the user to make the logical

assignment of physical device characteristics to the Resource). DEFINE is

also used to indicate the legal path between nodes in the architecture.

COMMAND SYNTAX:

DEFINE [symbol-type j, (Resource-name]

DEFINE PATH, Inodel inode2iLlinklI,...,Ilinkni

DEF PATH

where:

!symbol-typel is the symbol type (sqr,dia,lod,tty,etc.) for which the user

wishes to define attributes. Figure 6-8 shows these symbols.

[Resource-name] is an optional parameter that specifies the name of an
existing Resource from which the symbol-type attributes are to be copied.

Inodell is the name of the node from which the path is to run.

lnode2l is the name of the node to which the path is to run.

ilinklI,...,4linknl are the names of the links along which the legal path
between nodel and node2 is to run.

FULNuCION RESULT:

If the DEFINE command is issued with the format

DEFINE Jsymbol-typej

a form will be displayed that shows the parameters currently assigned to
this symbol type. The form has the same format as the Resource form in
figure 3-6. The user may wJify these parameters as desired. After
symbol attributes nave been defined, any further Resources automatically ,
created in association with the symbol will be given Wne attributes that
were de[ined for that symbol type.

If the syntax of the cormand is:

DEFINE symbol-typeI, [Resource-name]

,he systein will present the user with a form to be filled with the.
attributes of the named Resource. The user can check the (dtia n,! or
mdxlity it. When entered, the data last displayed in the fom, -iII DO usl

ti create the attributes of the symbol type.

6-44

* .. 'a ~~,. '~3% %A %.~. .V ~- 1

..... - -.. . -7 7--... .

S0

c) Any path which uses the link CON F in the direction
from its to node to its from node will use CONB.

d) Establishing the connection between two nodes implicitly
defines a point-to-point path between them.

These four rules have a number of restrictions of which the user should be
aware:

1) Defining a path from one node to another implies defining paths
from all nodes along the path to the last node in the path.

2) Changing a path (redefining, deleting) changes any other paths

that use it as a sub-path.

3) A point-to-point path cannot be deleted.

4) When a path between two directly connected nodes is deleted, a
point-to-point path is automatically restored.

5) Deleting a node or link from an architecture removes any paths
which use the deleted entity.

6) Changing the name of a node or link changes the name of the
entities in the Legal Path Table as well.

7) Cyclic paths are not allowed.

6-46 I
es%

I..

6-46.

br. Ir. W-.1. r r W.1 Y -- -,I.V.K -7. -7K K K 7 W 17&uia*-

N.

ADE / DELETE

6.3.7 ADE COJMAND: DELETE

The DELETE command allows the user to delete nodes or links in the
architecture or parts (or all) of the previously defined Legal Path Table

(LPT).

COKtMAN D SYNTAX:

DELETE inamel3,...,[name-n2

DELETE PATH,1nodeljinode2j

DELEE *

DEL

where:

inamell is a required parameter that specifies the node or link to he. deleted.

[name-n] is an optional parameter which specifies an additional node or link
to be deleted.

Inodell and [node2i are required parameters indicating the nodes between V,

which the legal path is to be deleted.

* indicates the entire architecture is to be deleted.

FUNCTION RESULT:

If the user is in DRAW mode, the following results are seen. When a
symbol is being deleted, the symbol and all connections to it are erased
from the screen and removed from the database. If a connection is being
deleted, the connection is erased from the screen and is removed from the
database.

If the user is NODRAW mode, the affected entries are deleted from the
database and the screen remains unchanged. When a path between nodel and
node2 is deleted from the Legal Path Table, only that path is deleted; any
sub-paths which are in this path are unaftected.

N-

L a
"6-47 N

% ,S.

<S

ADE / DRAW

6.3.8 ADE COMMAND:
DRAW

The DRAW command is used to put the user in the ADE DRAW mode.

COMMAND SYNTAX:

DRAW

DR

FUNCTION RESULT:

The DRAW comand sets the ADE mode to DRAW mode. This mode will remain in

effect for all future ADE sessions during the current DUI session until
changed by a NODRAW ccmmand. The DRAW cmand is not available on a VTI00

terminal.

In DRAW mode, all changes made by a user
to the architecture which affect

the architecture display are immediately reflected in the display, i.e., all

nodes and connections are drawn on the screen as they are added to the

architecture, and deleted nodes and connections are erased from the

architecture.

V

',A

It

%I

6-48

-vtJ . V %VV%0

ADE /END

6.3.9 ADE CCMMAND: END]

The END command is used to terminate the ADE session. "

COMMAND SYNTAX:

END

FUNCTION RESULT:

The END cornand terminates the edit mode of the ADE session and
automatically triggers the generation of a Legal Path Table (LPT). The
user will be questioned as to the method of generation for the LPT and for
information necessary to clear up ambiguities in its generation before
control is returned to the DUI level. The LPT is described in section
6.3.19.

If the user does not wish to generate an LPT, another END coanmand will
return control to the DUI level.

I.e

6-.

5-

*5"

5
5'..s!

6-49

ADE / HELP

6.3.10 ADE COMMAND: HELP

The HELP command provides the user with access to ielp information about the

current ADE interface and about other aspects of the AISIM system.

COMMAND SYNTAX:

HELP [subtopic] ,..., [subtopic]

HELP [@topic] ,[topic-name] ,[subtopic] ,...,[subtopic]

where:

[subtopic] is an optional parameter indicating the name of a subtopic about
which the user would like information. Successive subtopics contain more
detailed information.

[@topic) is an optional parameter indicating that the top level topic should
not be the current function but should be as specified. Available HELP topics

are:

topic Acceptable Abbreviation

FUNCTION LEVEL F
CONCEPT C

GUIDELINE G o
PROCEDURE P
NOTE N

[topic-name] is an optional parameter indicating thie name for the new top
level topic.

FUNCT ION RESULT:

if no path is specified help information on the ADE function is displayed.
The commands acceptable at the current ADE level of operation are listed as
subtopics indicating that further help is available on them. HELP with no

path specified displays the ADE help message text and available subtopics,
followed by the prompt:

Subtopic?

If you type in a subtopic name, a HELP message on the subtopic will be

displayed. If one or more subtopics exist at this level, HELP will prompt you

for another subtopic allowing you to see additional help information.
Pressing a <cr> will terminate your descent for additional help. 1
If you know precisely what information you need, you can access it directly by
including a path paraeter which specifies the subtopics to move down through

to locate the help message. Each subtopic listed in the path must be
separated from the previous by a comma.

6-50

After you have located the help information you wanted and prior to -c I
terminating your initial request for help the system will prompt you for
another topic. The help topic initially is the AISIM function you invok,_ |
help from. You can continue to view information on this topic-name by simply

entering another subtopic path. Information on other AISIM functions, AISIM
modeling concepts, and user-supplied instruction can be obtaineJ by changi,
the help topic. You can change the help topic by typing the special character A

@ followed by the new top level HELP topic and the topic-name. Once again

you can specify a subtopic path to the information you want. If you are not
aware of the topic-names under a specific topic, entering the topic parameter
will display a message listing the possible topic names.

I5

.I
6-51

ADE / LIST

6.3.11 ADE COMMAND: LIST

The LIST comnand enables the user to list the legal paths that have been ..V

defined in the architecture. .
COMMAND SYNTAX:

LIST PAxH,inodel1],node2.

LIST LPT

L

where:

Inodeli is the name of the node at which the path to be listed begins.

[node2l is the name of the node at which the path is to end.

FUtZ'TIONAL RESULT:

If the command syntax is LIST PATH, a format like that below is displayed:

FROM: node3 TO: node2 PATH:

linkl,link2,...,linkn

If the command syntax is LIST LPT, the entire Legal Path Table is
displayed.

6-52

* ~ ' 4 f%(. ePN

ADE /MOVE
"e,

6.3.12 ADE CCIMAND: MOVE

--
O

The MOVE command allows the user to change the location of a node in the
arch itecture.

COMMAND SYNTAX:

MOVE node ,ix-position , y-positionI
0U

M

where:

1nodej is the name of the node to be moved. 0

Jx-positionj is the x-coordinate of the new position, i.e., the position

to which the node is to be moved.

[y-position1 is the y-coordinate of the new position, i.e., the position
to which it is to be moved.

FUNCI ON RESULT:

If the user is in DRAW mode, the node and all links to or from it will
first disappear from the screen. The node will then be redrawn at the new :.
position and the previously defined connections with other nodes will

re appea r.

.

If the user is in NODRAW mode, the coordinates of the node will be changed
in the database, and the screen will remain unchanged.

6-53

U,%,,p

-P

ADE / NODRAW

6.3.13 ADE COMMAND: NODRAW

The NODRAW command is used to put the user in the ADE NODRAW mode.

COMMAND SYNTAX:

NODRAW

N

FUNCTION RESULT:

The NODRAW command sets the ADE mode to NODRAW mode. This mode will

remain in effect for all future ADE sessions during the current DUI
session until changed by a DRAW command (section 6.3.8).

In tNODRAW mode, no changes which are made to the architecture are

reflected in the display until the display is explicitly redrawn by the
user. For example, when nodes are placed in the architecture or deleted

from the architecture, the changes are made to the database, but the

screen remains unchanged. Commands which can be used to update the

display are REDRAW (section 6.3.16) and WINDOW (section 6.3.18) commands.

All ADE commands are available while in NODRAW mode, except that on aVTI00 terminal, connections can only be straight lines - bent line

connections are not allowed. Connections on the V100 are drawn
automatically when the CONNECT (section 6.3.5) and RECON (section 6.3.15)

commands are issued.

6-54

V. . V 4* ~ ~*~ ~P ~-~ . V 'P ~ - , *..*.**r***.
-5, .5'. 5

*~Y T -

___________ADE / PLACE

6.3.14 ADE CCMMAND: PLACE

The PLACE command allows the user to position a legal ADE symbol in the
view space at specified coordinates.

CCIMAND SYTAX:

PLACE [symbol-type,.inodei, x-positioniiy-positionl,[size

P

where:

!symbol-typel is a required parameter which specifies one of the legal ADE
symbol types. The legal symbol types are shown in figure 6-8.

Jnodej is a required parameter that indicates the name that is to be
displayed and associated with this placement of a symbol and where name is
1 to 8 alphanumeric characters.

%x-positionl is a required parameter that specifies the horizontalposition of the symbol relative to vertical grid number position 0. The
x-position must be within the limits of the view screen.

Jy-position3 is a required parameter that specifies the vertical position
of the symbol relative to horizontal grid position 0. The y-position must
be within the limits of the view screen.

[size] is an optional parameter specifying the size of the symbol to be
placed. The default size is the number of characters in name. Legal
sizes are 1-20.

FUNCTION RESULT:

If the user is in DRAW mode, a symbol of the specified type appears on the
view screen at the x, y positions indicated in the command. The symbol
name appears within the symbol and the symbol size is regulated by the
size parameter.

If the user is in NODRAW mode, the symbol is added to the database, and
the screen remains unchanged.

6-55

ADE /RECON

6.3.15 ADE COMMAND: RECON

The RECON cormmand allows the user to alter the shape of a given link,
giving it corners, decreasing the number of corners it has, or adding to
the number of corners it has.

COMMAND SYNTAX:

RECON [linkl

R

where:

I linki is the name of the link to be redrawn.

FUNCTION RESULT:

If the user is in DRAW mode, the link will disappear, but the cursor (+)
will be turned on. The cursor is positioned at the from node on an HP
terminal, or at its last location on a TEK4105 terminal (see CONNECT
command). As with the CONNECT comriand (section 6.3.5), the user has two
alternatives:

1) cause the system to connect the two symbols with a straight line
through their centers by typing any non-period alphanumeric
character

2) cause the system to produce a shaped line segment from symbol 1
to symbol 2 by:

a) moving the cursor using the graphics controls, to a position
where he wishes to bend the line,

b) typing a period (.),

c) repeating (a) and (b) until a maximum of five corners have

been created.

d) completing the line segment fran the last corner to symbol 2
by entering any non-period alphanumeric character.

If the user is on a Vl00 terminal, a straight line connection is
automatically created between the two nodes and stored in the database,
but the screen remains unchanged.

If the user is in NODRAW mode on another terminal, the two options given
above are still available. The only difference is that the connection

lines are not displayed on the screen as the connection is defined.

6-56

,,,'" v +'.. ,,% .'.,,% %, ",, %,.% . ". % •,,.,,,-..- ., -. ,, .% .'. -.. ... ,,- j ,.. . .- -. +.+-. .,- + -.% .-. .-. .. ' ,,

I}

ADE / REDRAW

6.3.16 ADE COMMAND: REDRAW b

The REDRAW ccnmand causes the current architecture window to be redrawn to
reflect any changes which have been made in NODRAW mode.

COMMAND SYNTAX:

REDRAW

|-1

RED

FUNCTION RESULT:
'4

The display is redrawn to reflect the current architecture including all
changes made by the user while in NODRAW tode.

,'Vq

.'

6-57 %. 3

I

i • n'- n | | hm mi' , 'n . ; "m . n. n;n , = " ; %
-. ,-

p.,

.9

ADE / SAVE

6.3.17 ADE COMMAND: SAVE

The SAVE conymand copies the contents of the working database into the
user's permanent database.

COMMAND SYNTAX:

SAVE

FUNCTION RESULT:

The permanent database is replaced with the contents of the working
database, and the user is returned to the ADE ready state - # prompt.
This coxrmand is useful when the user is defining a large system because it
allows the user to protect the work done up to the point of issuing the
SAVE ccmmand.

" I

A6".

%?'A'

I

A,

6-$d ,%

i.,p it - . * * ~ ,j * ... * - * .A

171 AUTOMATED INTERACTIV SIMULTIfh NOW(NIS VX V
VERImNU USEWS HAW..- (U) HUHES M1IWTCON
FULLUTOU CA lUWiU SYSTEM MOW V MIU.UTOM ET AL.

IWCLASIFIED 29 MY 97 ESD-TR-97-220 FlS~n-W-C-Nfl F/0 12/5 ML

HIU_1.0 .1.6
W 12.0-

m

1111 125 1111.

/ ar

sJz

6.3.19 Termination of an ADE Session

The ADE session is terminated by issuing the comnand,

END

This completes the edit portion of the ADE session and begins a sequence
of events that leads to a return to the DUI Level. Before control is
returned to the DUI level, however, the system gives the user the option
of creating a new Legal Path Table. The Legal Path Table (LPT) created by
the system is based upon the architecture that was created. The LPT
consists of a two dimensional array. Entries in the array represent a
means of getting from one node to another.

Entries contain two pieces of information:

1) the next node in the path from Node 1 to Node 2
2) the link used to get to the next node.

There are three basic methods of generating a Legal Path Table at the end
of an ADE session. In response to the END command, the system questions
the user:

BY WHICH ME1HOD DO YOU WISH TO GENERATE THE LPT (A, B, OR C)?

IF YOU HAVE AN ESTABLISHED LPT OR IF YOU WISH TO SKIP THIS STEP,
TYPE "END"

IF YOU DESIRE MORE INFORMATION ON ME£hODS A, B, OR C, TYPE "INFO"

After the pound sign (#) prompt, the user may enter either "A", "B", "C",
"END", "HELP", or "INFO". If the user enters END and a carriage return
after this or any subsequent # prompts without responding to the previous
prompt question, any currently defined LPT, including none, will remain in
effect, and control will return to the DUI level.

If any of the three options is chosen the, previously defined LPr will be
deleted from the database and a new LPT will be produced. Since these
algorithms may take several minutes, the user is provided with a message
that lets him know the system is progressing with the LPT. The prompt

* initially reads "Generating LPT I". After so many routes have been found,
the message will change to "Generating LPT 2" and so on. The following
paragraphs discuss the individual processing performed in response to
methods A, B, and C.

MLTHOD A - Method A directly connects adjacent nodes in the architecture
but no other paths are generated. This method is used when message
routing paths are not of interest in the model. This method requires the
least processing time to generate the LPT. After the user selects method
A, the system will begin generation of the LPT. In general, AIS[M will
not solicit any further information if this method is used.

6-60

sr or

Method A detects two types of error. If the generator detects an
unconnected node, the system will output the following error message:

UNREACHABLE NODE... "node name" l

and control is transferred to the DUI level. If multiple links connect
nodes, the system will prompt the user for resolution of ambiguous paths.
The system will prompt with:

GOING FROM "Node namel" TO "Node name2" CAN GO

I. Through "next Node name" BY CHANNEL "channel name"
2. Through "next Node name" BY CHANNEL "channel name"

ENTER THE NUMBER OF THE ROTE YOU WANT TO USE #

All "Through" options will be listed. The choice of path is selected by
entering the number of the path after the pound sign (#) prompt. If there
are ambiguous paths for other node pairs, the user will be prompted for
resolution. If the user should ABORT the LPT generation the following
prompt will be displayed:

UNABLE TO SAVE LPT

Control is then passed to the DWI level. If all ambiguities are
clarified, the system will complete the generation of the LPT, and issue
the following message:

SAVE OF LPT COMPLETE

The user is then at the DUI level.

METHOD B - Method B should be used when there is extensive routing through
the architecture. Using Method B, AISIM will algorithmically find all
possible legal paths through the system.

This can involve a lot of processing in fully connected architectures
because a path from every node to every other node must be defined. For
example, if there are 20 nodes then there will be 380 paths, 20 times 19.

The AISIM responses for method B are similar to those described in method S
A. Because AISIM will fully connect all nodes in the architecture there
are bound to be many ambiguous paths. The user will be prompted to
resolve all ambiguous paths.

METHOD C - Method C should be used when there is extensive routing through
the architecture, also. Using Method C, AISIM will algorithmically find
all possible legal paths through the system but will assume that the path
for directly connected nodes in the architecture is the direct link. This
can substantially decrease the number of paths the user must resolve.

The AISIM responses for method C are similar to those described in method

A.

The HELP request causes the system to show the available commands.

6-61

b

I

The I14F request prints the following:

METHOD A defines as legal paths only connections directly between adjacent
Nodes. Longer paths must be handled explicitly in the user Processes.

METHOD B generates all possible paths between each Node pair. You must
identify default legal paths for each Node pair.

METHOD C generates all possible paths between each Node except for
directly connected Nodes. In the case of adjacent Nodes, the direct
connection is assumed as the legal path.

Type END and a carriage return to exit the LPT generation.

In figure 6-9, an AISIM architecture is shown. This architecture connects
nine nodes together with 10 links. Using method A, the user is required
to resolve 2 ambiguities. Using method B, the user is required to
resolve 20 ambiguities. Using method C, the user is required to resolve
12 ambiguities. The Legal Path Tables using each of these methods is
shown in figures 6-10 through 6-12.

6.-

6-62 ,

*.1'1

.04
HO4 =E LEFT 9, UP 8

44

CIO

\ /

1 5 ' - _ _ _ __--_ _ _ _ _
,Ell

3 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 9
8 5 0 5 0 5 0 5 8 S 8 5 8 s 8 s 8 S 0 5 8

Figure 6-9. Sample Architecture

FROM TO NEXT VIA
NODE NODE NODE LrINK

SC C C2
C A A Cl
C S 1S C2
C 0 D C3 %
D C, C C4 -
D E E C.
D F F Cs

E0 D Ce
E G 0 C.F D D CS
F G G C7
0 E E C-
G F F C7
a H 1 C9
G I I CisH G G C9

I G G cie -

Figure 6-10. Sample LPT Generated by Method A

6-63

" w- w
.

w% . ' . • , . *,% % *,*% . % . - •..",.. - . - -. . . .* .%* - .- *. . o

LPT Ge4UArED
FROV TO NEXT VIA
N.WE -ODE NODIE LIM~

A 3. C Cl
A C C Cl
A D C Cl
A E C Cl
A F CCl
A G C cl
A c CCl
A I C Cl

U A C C2
c CC C2r,

9 0 C C2
U E C C2

0 F C C2
B G C C2

8 H C C2
9 1 C C2

C A A Cl
C a U C2
C 0 0 C3
c E 0 C3
C F D0 C
c G 0 C3
C H 0 C3
C I D C3
O A C C4
D 8 C C4
O C C C4
D E E Ca
D F F C 5
0 0 E C:D H E CU
D I E C:E A D CO
E a 0 IS
E C D C:E D 0 cS

E F c cc
E G G C:
E G c C.
E I G CSF A 0 CS
F 8 D CS
F C D CS
F 0 0 cs
F E G C 7
F G 0 C?
F N a c
F I G C7
G A E CS a,-

G 0 E CS
G E E Cm
a F F C7?
G N1 N C9

G I I Cie
H A G Ce

a a C9
c C G CSN 0 G C9
E G C9

H F 6 C:

HI C C,I A G CiS
I a G CISI C G C
1 0 G CIS
I E G C
I F G CIII a G CII
I H G C

Figure 6-11. Sanple LPT Generated by Method B
JI

6-64

0

0

*A C c c I
A 0 C Il
A C c I

A FC C2
E c C 2l

A HC C2

E C (2

8 or C C2
G C?2'

c 11 C C2 6

C F C3

c G 0 Cl
c 0 Cl
o r/C C3
0 Cc C:

O F F cr

0 C:

E c 9l(

6 0 0 Cs
E r C Ca

6~ ~ 6 S-

6 c 6 C
F A 0 ..

F G Gl C7
F C 0Cl
F 0 ClCS

G E C eC

F H 9 c 7

Q I I CEOe
6A t 9S

C CG C9

CF FG C:

HA G C,

c G 6cS

Fiur 1-2 Capi UY Ccae b oSo

I A 665S

SECTION 7

ANALYSIS USER INTERFACE (AUI)

After completing a model design using the DUI, the model can be exercised
using the commands available in the AUI. During simulation, statistics
are kept on Variable values, Item throughput, Resource utilization,
queueing delays, Queue lengths, Action times, Process execution, and
Process timing. A set of output reports organizes these statistics for
printing off line or viewing on-line (while in the AISIM READY level)
after completion of the simulation run. Plots of selected model
parameters, however, may be drawn on the screen when simulation is halted
at a breakpoint, end of period, or end of simulation.

When the user initiates an Analyze session, the user is given an opportunity
to enter a description of the current simulation run. The description will be
placed at the top of the output report and at the beginning of the statistics
portion of the output report. This descriptive text is stored in the user's
design data base. If the user wishes to describe the current run, a form is
displayed for the user to enter the text. If a previous description exists,
it is displayed in the form. The form for entering the description is shown
in figure 7-1.

ENTEF DEcCFIFTION OF MODEL:

Figure 7-1. Form for Text Description

The current date and time the simulation is run are also placed at the top of

the output report and at the beginning of the statistics portion of the report.

The command issued to enter the AUI from the AISIM RLADY leve2l contains an

optional parameter NOXIATE. If this parameter is omitted, the project
database is first translated before i simulation is perforned. This
translation converts the database into thc fornat required foc simulation
execution.

If the NOXLATE parameter is used, no translation will take place. The
last translation of the project database is used in executing a simulation
run. Since another translation is required only if the database was
changed (in the DUI) since the last translation, it is not always

necessary to repeat the translation process at the start of an analysis
session. The JrXDA-; -),)tion)ermnits skipping of the translation step.

7-1

lie0 I.

In the translating process, the user is asked the following question, if there
is more than one Scenario in the project database:

WHICH SCENARIO DO YOU WISH TO TRANSLATE?

The user must respond with a valid Scenario name, one that has been
defined previously in DUI level. A carriage return in response to this
question will cause AISIM to list available Scenarios.

If the Scenario name given is invalid the system will respond:

INVALID SCENARIO NAME - REENTER

The user should then enter the correct Scenario name.

When translation of the model and Scenario has completed, the simulator
reads the translated database and checks for errors. If the simulator
detects one or more errors, the message

ERRORS DETFXfED IN MODEL 'TRANSLATION 5,

is displayed, the AI level is exited and the user is returned to the AISIM
READY level.

At this point the user should enter the EDIT command (described in section
13.3). This automatically invokes the EDT line editor on the project report
file. The user should use the Find command of the VAX/VMS EDT editor to list
all occurrences of "####". This will result in a list of all errors detected
during initialization. Each error documents a problem detected in the model.
The EDT line commands used to view the report file are discussed in section
13.3.

If no errors are detected, the following message is displayed:

NO ERRORS DE'ECrED IN MODEL TRANSLATION
YOU MAY NOW ENTER COMMANDS

The system provides a # prompt and is ready to accept any of the valid AUT
commands. These conmands arc described in the following pages.

During each of the three phases of analysis - 1) pre-simulation (before

the first GO command is issued), 2) mid-simulation (after the first GO
command is issued but before simulation termination), and 3)

post-simulation (after simulation termination), the user can invoke
different commands.

PRE-SIMULATION COMMANDS:

CANBREAK DEFPLYT EDIT END GET GO
5,%

HELP INFRE G LIST LSIVAL UNITS

SAVE (plot definitions) SETBREAK DELETE

7-2
S,.
,

.5'

S.~'q.~p %u

-, .

MID-S IMULATION COMMANDS: w

CANBREAK EDIT END °'" HELP LIST LISVAL

PLOT SAVE SETBREAK UNITS

POST-SIMULATION COMMANDS:

END HELP LIST LISTVAL PLOT SAVE UNITS

The simulation is started with the GO command.

The SETBREAK and CANBREAK commands are used to establish and cancel stopping
conditions (or breakpoints) for the simulation. EDIT is used to make
temporary changes to Constants, Variables, and the random number seed values •

(the keyword is STREAM) upon which stochastic timing and probabilistic
branching are based. The Scenario and Loads may be modified by changing the
values of parameters specified by Constants. A limited number of Resources in -%0-
the model sometimes causes a bottleneck which is evidenced by a waiting line
or queue. The effects of this queueing may be eliminated by changing the
available Resources to an unlimited quantity. The INFRES command is used to do
this on a temporary basis. LIST and LISTVAL are used to display model v.v
entities, their attributes, and their values. LISTVAL also allows the user to
examine the current random number se.s. The END command returns control to
the AISIM READY level. %

The DEFPLOT and PLOT commands are used to specify what information is to
be gathered for graphs and to request the graph to be displayed at the
terminal, respectively. The DEFPLOT command can only be used prior to the
start of simulation since the simulator must know what statistics to
sample. The UNITS command is used to specify the time units for output
produced by the simulation.

A simulation may be performed in periods and is suspended at the end of the
number of periods specified. As each period completes, a message is displayel V.

on the screen indicating the period number just completed and the simulation
and real clock time at which it completed. The number of periods to be
simulated is specified as an optional parameter of the GO command. The user
is prompted at the end of the period with the message:

END OF PERIOD
YOU MAY NOW ENTER COUMANDS -*...

and with an audible 'beep' at the terminal.

The user can now make changes in the values of Variables, set breakpoints, f
display plots, or cancel breakpoints. By suspending the simulation at the
end of a perirA, the user can dynamically interface with the Model.

7-3 N,
e ,%

M. ';' , - . ", ' ' , ' . ,.-.-.- % ..-.. ,%. "'-- '' ,'% ''', .'' . '': .''-. ' ./,k-'' .¢"- ""%'%''" ,""".-." " .''..'0 .

A similar result occurs at a user specified breakpoint, except that the
message reads:

(description of the condition of the breakpoint)

,
An audible 'beep' is also sounded at this point.

The AI level commands are described in detail on the following pages.

p.'i

'.1*J

1

-

.4..:i
|

7-4 4.

.U J

0

1AW NWKE 'EN 'w

ANALZE () A UPMNDS IRMNAII)-

-------------- AALLV E .0

2F t
.0

DEFINE

CPMR~K EI~kTTSARE0

wo I.

,:OT

EDITf (f) SO E 4
FigurE? 7-2. Anlysis Us~rVALUEfc 7fllfd

IF U

F7-5 A TS-- I

-S. -

~~*p*.p*S.*I*E OF SS C~. ~~
.~ ~ 1C * * . .* * . ~ * * * . .

CAN BREAK N
CAN

DEFPLCTI jentity-typel , entity-namei,...,1 entity-nareI
DEF

DCLorTE TITLE,i~titlenumli i...., [titlenumni
DELETE TITrLr,*
DEL

EDIT fentity-typei, jentity-lamine, new-valueI

E

GET DEFisetnamei
y

GO [n]
G

HEP subtopic],...,(subtopicl

HELP [@topic] , [topic-larne] , [subtopic] ,..,subtopicl

LIST ientituy-typ.
LIST DEF
LISr PLOT'

LIST TITLE
L

i-1STVAL [entity-typel,[eltity-lamel
ILV

SAV,/E settypej, [setnamej,[descrj

SETBREAK lentity-typei,[Cftityfmla,irel-operj'valuej
SET

UNITS [unit-typel

Figure 7-3. AUI Crxmand Sunnary

7-6

AUT / CANBREAK

7.1 AUI COMMAND: CANBREAK

The CANBREAK comnand allows the user to cancel a previously defined ,w
breakpoint. See the SFTBREAK ccrmand in section 7.14.

COMMAND SYr.,fAX:

CAN

FU rfON RESULTS:

A previously defined breakpoint is canceled.

.,'%

"1

V.

i,p
•1%

:I'

1%

- i ..

p

AU I /DEFPLOr -

7.2 AUI COMMAND: DEFPLT :1
DEFPLT is a pre-simulation command that allows the user to specify what .0

plot data to collect over the period of simulation. The specified plot is

added to the present set of plot specifications. This plot data is later 0,).

graphed with the use of the PLOT ccmnand.

COMAND SYNTAX:

DCFPLOT lentity-typel, entity-namej,...,[entity-name]

DEF 4A

where:

[entity-typel is a required parameter indicating a valid entity-type

(i.e., Variable, Queue, Resource, Process, Item).

[entity-namej is a required parameter indicating the name of the entity
whose value is to be plotted. The user can enter a list of entity nanes
(up to a maximum of eighty characters) of the given entity type at a time.
Multiple DEFPLOT commands can be used to define more plots.

FUNCTION RESULT:

This command causes an attribute form to be displayed, from which the user
must select one attribute. The list of attributes depends on the
entity-type selected.

When the attribute form has been entered, a statistics form is displayed,
from which the user must select one statistic. The list of statistics
displayed depends on the entity-type and attribute selected.

If only one choice for either an attribute or a statistic exists, the form
is not displayed. The forms displayed are shown in figures 7-4 through 7-3.
A sample plot is shown in figure 7-9. After the simulation has generated plot
data, the plots can be displayed at the user's graphics terminal using the
PLOT command (see s-ction 7.12) and printed on a graphics printer (see P
appendix -.4).

A maximum of ten plots may be specified during any Analysis session.

.7-

%

AITP!BUTES (PLACE Am NEXT TO ONLY ONE) p

I NUMBER CREATED
4UMEER DESTROYED
NtyEEO IN SYSTEM
TIME 1N SYSTEM

Figure 7-4. DEFPLOT Form for Items

i I.

ATTRIBUTES (PLACE AM X NEXT TO ONLY ONE)

OCOMPLET[OM T[E
I AUTO SCHEDULED

I CALL SCHEDULED

;TATISTICS (PLACEA X NEXT TO ONLY ONE)

>.MULATIVE mEAM

TUN STA D~P EV
?UMULATI'VIE lM-

PERIND MEAM

ER 7AC HE0V

';:]D IA '

Figure 7-5. DEFPLOT Forms for Process

7-9

9 . . -, , - V- I*, . - . -.- -. ., . . ,'-, - - ., - .. ,, , ., . - . , - :- ,, '

ATRIBUTES (PLACE AM X NEXT TO ONLY ONE)

I NUMEER IN ,lUEUE
NUMBER BLOCKED

TIME iN QUEUE
TIME BLOCKED

STATISTICS (PLACE AM X NEXT TO ONLY ONE)

CURRENT

rC!MULATIVE MEAN

CLM STANDARD DEV

CUMULATIVE MIN

CUMULATIVE MAX
PERIOD MEAN

PER STANDARD DEV

PERIOD MIN

PERIOD MAX

Figure 7-6. DEFPLOT Forms for Queues

ATRIBUTES (PLACE AM X NEXT TO 3NLY ONE)

i IN WAIT QUEUE .,

t IN BUSY QUEUE
IN iDLE UEUE

WAIT TIME
BUSY TIME

RE9UEST TIME ,..

STTirT!CS (PLACE AN I NEXT TO ONLY ONE)

CURRENT
CUMULATIVE MEAN

CUM si ;.N n En ou
C'MULATIVE MIN

CUMULATIVE MAX

DE91ICD MEAN
PER STI>D .EV

PERMD MIH
PERIOD MAX

Figure 7-7. DEFPLOT Forms for Resources

.
p..'

7-10 1

N,

IP
'TAT[fCS (PLACE AM X ET 7 INL 2NE) e -w

:''MULATIVE MEAN

C'JM STANDARD DTV

CUMULAT!14E MIN
CUMULATIVE MAX
PERI9D MEAN

PER 'TANDARD DEV
PERIOD M N
PER!3D MAX

Figure 7-8. DEFPLor Form for Variables

I. i:MULHTIYE MEW4 TIME IN SYSTEM FOP ITEM MSG

44,2 .000

379. 000

Figure 7-9 Sapl Po
7-11

19% .CIL

150n .% JO 451C1.000 T5CiO .OE 1CI5Cn'. .0 ~ 1 .L, -:"
CL.O': INr1;MECIrIE; S

I.- . . . 4 . _ .V'-""

Fiqur~e 7-9. Sample Plot -'7

7-11

- - - - - - - - .-.* '
-~ *%%~..

AI DEXLETE

7.3 AUI CcMAND: DELE

DELETE is a pre-simulation ccirand that allows the user to delete plot

definitions which were set up through the DCFPLOT or GET commands.

COMMAND SYNrX:

DELETE TITLE,[titlenumli,..., [titlenumn]

DELETE TITLE,*

DEL

where:

ititlenumll is a required parameter indicating the number of the plot

definition to be deleted. A list of definition numbers may be entered.

is a literal parameter, indicating all of the current plot titles.

FUNCTION RESULr:

rhis cornmand causes the specified plot definitions to be deleted from
those being used for the current simulation run. If the definitions came
from a definition set in the database, they still reside in that set in
the database, i.e., the database is not modified by this command.

This comand allows a user to retrieve plot definitions with the GET DEF
command (see section 7.6) and then use only selected definitions for a
particular simulation run.

The user can see the numbers of the current plot definitions with the LIS,
TITL command (see section 7.10).

I

7-12 "
,'6

5
*5

--...................

~v

AUI / EDIT

7.4 AUI COMMAND: EDIT

the EDIT comuand in the Analysis mode allows the user to change the value
of either a Constant, a Variable, or specification of the random number
stream used to represent probabilistic events. The value of a Variable
with an alpha literal as its initial value cannot be changed with this
command.

COMA4kND SYNTAX:

EDIT jentity-type , lentity-name ,inew-valueI .

I

whe re:

Jentity-typej is a required parameter indicating which type of entity is
to be changed either Constant, Variable, or Stream).

jentity-name is a required parameter indicating the name of the Constant,
Variable or Stream (Branch, Load, or Action) which is to be changed.

[new-valuej is a required parameter indicating the new value of a Constant
A"

Dr Variable or for STREAM, the new random number stream. The new value
may be expressed in one to twelve digits, and includes the value zero.
The legal values of "new value" when specifying a random number stream are
1 through 10.

NOTE: Constants may be changed only before the sturt a)f the first
simulation period. Variables and Streams may be changed before We G.
start of any simulation period or at a breakpoint.

FUNCT ION RESULr:

rhe value of the Constant or Variable or Stream is changed to the new
value, and remains at that value until changed by another EDIT command.
This command only affects the current translation of the database;
therefore, at the eryd of an knalysis session the Constant or Variable or-
Stream is restored to its original value. 14% 1

It the value of the Stream is no)t changed, default values ar:

Action: 3, for random Act ion durations
:P %

Rr~nch: 2, for the PROB Primitive

Load: 1, for random intervals between a Iad's triggerinrj of
aorohr Pr zoc2ss instance. %

7-13

A
I

AU I /END

7. 5 AU I COMM1AND: END

The END command is used to terminate an Analysis session.- '

,

COMMAND SYNTAX:

END

FUNCTION RESULT:

This command causes all displays to be cleared and, if plots were A

generated, asks the user "Do you wish to save plot definitions? (Y/N)"
and "Da you wish to save plot data? (Y/N)" If the answer to a question
is yes, the user is prompted for the required information before control
returns to the AISIM READY level. Plot data and definitions are stored in

a file called project.PLT where project is the name of the user's project

database. U, n termination of an Anaylsis session, a copy of the output
report is automatically printed.

-,
%."

..

7-14 .

A /I /GET .

7.6 AUI COMMAND: GEr

The GET comand allows the user to retrieve a previously saved set of plot
definitions and add them to the current plot specification. The plot
specification defines what plot data will be collected during the
simulation. The LIST DEF command may be used to obtain a list of the
available plot definition sets.

CCMMAND SYTrAX:

GET DEF,Isetnamel

where: I

lsetnamei is the name of the set containing the plot definitions. The GET

command may be issued only before the first simulation period.

FUNCTION RESULT:
I

The set of plot definitions is retrieved and made a part of the current
set to be used by the Analysis function.

The LIST DEF command (see section 7.10) may be used to obtain a list of N

the available plot definition sets.

V

7-15

,.,..-

I.. ".l

I

I

V.

,"p- :,,,, .''... '.',, . . %+...."".-'' .,,.-,'i' .-.. ,.. '<.- - ."'. -+,,."- . .""""--. """" . < '- .""-,'."" ,. ",",, 7--•v 1 ,. .,%,:'

NO

5~..

AUI /GO

7.7 AUI COMMAND: GO

The GO command allows the user to start or resume a simulation run. " A.

CCMMAND SYNTAX:

GO [n)

G F

where:

(n] is an optional parameter that specifies how many periods the
simulation is to run. If not given, the default result is that the entire
simulation defined by the selected Scenario is executed. If an n greater
than the number of periods specified in the Scenario is entered, the
simulation executes all periods specified in the Scenario and no more.

FUN2TION RESULT:

This command, which is valid before any simulation period or at a
breakpoint, begins or resumes the simulation of the translated Scenario.

If used to resume the simulation, resumption occurs at the breakpoint or
at the beginning of the next simulation period.

'71
',,.

'.

p.q

-. ,

7-16 ,..

I *~q. * *

AUI / HELP

7.8 AUI COMMAND: HELP

The HELP coamand provides the user with access to help information about the
current AUI interface and about other aspects of the AISIM system.

COMMAND SYNTAX:

HELP [subtopicl,...,[subtopic

HELP [@topic],[topic-name] ,[subtopic] ,...,[subtopic]

where:

(subtopic] is an optional parameter indicating the name of a subtopic about
which the user would like inforrution. Successive subtopics contain more
detailed information. '

[@topic] is an optional parameter indicating that the top level topic should
not be the current function but should be as specified. Available HELP topics
are:

topic Acceptable Abbreviation

FUN4CTION LEV>:LJ F -

CONCEpr C
GUIDELINE G
PROCEDURE P
NO.E N e

[topic-name] is an optional parameter indicating the name for the new top

level topic.

FUNCT ION RESULT:

If no path is specified, help information on the AUI function is displayed.
The commands acceptable at the current AUI level of operation are listed as
subtopics indicating that further help is available on them. HELP with no
path specified displays the AUI help message text and available subtopics,
followed by the pronpt:

Subtonic?

If you type in a subtopic name, a HELP message on the subtopic will be
displayed. if one or more subtopics exist at this level, HELP will preempt you
for another subtopic allowing you to see additional he2lp information.
Pressing a <cr) will terminate your descent for additional help.

If you know precisely what information you need, you can access it dire:tly by
including a path parameter which specifies the subtopics to move down through
to locate the help message. Each subtopic listed in the path must be
separated fron the pr,.vious by a c(mva.

7-17

I WO

1,,,,]

"" " "; " '" " " """- " "".." " " "" " """ " • .'.'.V:'"" :%

After you have located the help information you wanted and prior to %

terminating your initial request for help, the system will prompt you for
another topic. The help topic initially is the AISIM function you invoked
help fran. You can continue to view information on this topic-name by simply
entering another subtopic path. Information on other AISIM functions, AISIM
modeling concepts, and user-supplied instruction can be obtained by changing
the help topic. You can change the help topic by typing the special character I
"@" followed by the new top level HELP topic and the topic-name. Once again
you can specify a subtopic path to the information you want. If you are not
aware of the topic-names under a specific topic, entering the topic parameter
will display a message listing the possible topic names.

*. :,

U.

V.

74

.4.

V S q t . ~
'U"1'

4
P

,V%''
" U

" U. ~ ' '.U '.& ~ i V ~ - '

.,..-

AUI INFRES

7.9 AUI COMMAND: INFRES S

The INFRES command causes the simulation to assume the existence of %
infinite available Resources for specified Resources.

COMMAND SYNTAX:%
S

INFRES entity-nameI,...,[entity-nameI
.1m%

INFRES * 'p

where:

!entity-namel is a required parameter indicating the name of the Resource
for which unlimited units are available. A list of up to eight Resource
names at a time may be entered.

• is a literal parameter, indicating all Resource entities in the model are to
be assumed to have unlimited units.

The INFRES command can be entered multiple times to set infinite resources f[r.
rnore entities.

FLJNCT1ON RESULT:

This command, which is only valid before the start of the first simulation D
period, allows the assumption that infinite Resources are available for
the specified Resources during the Scenario being simulated.

7.-1y

,....

'.

.. %

7-19

"Xt '"-" X; 4"l '- ";':.".."';¢.':' .'v'':'x "• "" .' "', ," . " .. ",*% :'-

HI.

AUI LIST

7.10 AU1 COMMAND: LIST
Op.

The LIST command displays all entities of a specified type. Inclided with
each entity is its name and its description.

COMMAND SYNTAX:

LIST [entity-type

LIST PLOT

LIST DEF

LIST TITLE

L

where:

entity-typel is a required parameter indicating any of the specific model
entities listed below.

ENT ITY ABBREVLIAT 10O .

CONSTA/f" C

RESOJRCE R

PROCESS P

VARL-3LE V %

O.e

ITEM

Q(JEEJE. Q

Tis ccnund is valid at any time duriij an *\na)ysls -sSIln.

EJCEION RLSULT:

71,he user is prusentei with a 'LiSt :f a1 e×xstVng entities >: t2Se
-'uestW typ. It the arrjurTh-nt is PDF, a 1i ;t -JL saveQd i[. t,
[,iv.n. If the ar'jurn.nt is DE', a list ut t1s]' 53v piot let :n:tion

Se!ts is]iven. If the arjument is TI'I,. ,, a list o[Lt c ,lt - leeined t)
the cjrctnt simulation is giver.

7-

} i"..

- %" '.% ** a

9 I

A',

AUI /LIS'IVAL

7.11 AUI COMMAND: LISTVAL

The LISTVAL command allows the user to display the current statistics for
the named entity.

COMMAND SYNTAX:

LISTVAL Jentity-typel, entity-namel

LV

-" where:

Jentity-typel is a required parameter indicating a valid Analysis system
entity-type. The valid entity types are the following:

Clock

Constant C

Item I

Process P

Queue Q

Resource R

Stream S

Variable V

Jentity-namej is a required parameter indicating the name of the entity
whose value is to be listed. When requesting the Stream for Loads,
Branches or Actions, or the Clock, this field is omitted.

FUNCTION RESULT:

The name of the entity requested is printed out with a listing of all
statistics for that entity.

The prompt "**** Enter YES/Y to continue, NO/N to abort ****" is
displayed. If the user wishes to end the LISTVAL listing, "NO" is entered
and the AUI READY prompt is displayed. If "YES" is entered the next page
of the listing is displayed, if there is one, with the prompt displayed
again. If there is no furthier data to be displayed, the user is returned.
to the AU ready level.

7-21

5,.

"' - -- .." . .

AUI / PLOT

7.12 AUI CakIMAND: PL~r

The PLOT command allows the user to produce a graph of the plot data
r

collected during the simulation.

CCMMAND SYNTAX:

PLOT

FUNCTION RESULT: -

This command, which is valid at the end of a simulation period or at a
breakpoint, causes the display of a form containing the plot titles which
were defined using the DEFPLr cormand (see section 7.2). Fram this form
the user may select any, all, or none of the listed titles.

When the selected titles have been entered, the user is presented with the
plot grid. The selected plots are produced and the user is promptcd for
more Analysis rrode ccrmands.

Each of the plots is produced in a unique line pattern.

Once displayed on the terminal, graphs can be transferred to a hardcopy

device (see appendix A.4). An example of the form that is displayed to
allow the user to select a plot is shown in figure 7-10. A sample plot is
shown in figure 7-11.

NUT: Due to limits imposed by graphics screen resolution, only a sample
of the data points produced by the simulation are included in the
plot (see appendix A.3).

%..

%

7.-2

7-22 .

-Ajv x , jw .W-1ww '.'I .P 111,1 IT .. ?~V

I

PLACE AN X 11EXT TO THE TITLES YOU WISH TO PLOT sp

I CUMULPTIUE MEAN # Ifl WAIT QUEUE FOP FESOUFCE 681
CUFENT 0ALUE FOP UPIABLE U POUTER
CUMULkTIUE MEA4i COMPLETION TIME FOP PROCESS MRS
CUMULATIVE MEAN TIME IN SYSTEM FOP ITEM MSG
CUMULPTI'E MEAN WAIT TIME FOP RESOUPCE BIB2
CJn1ULATIUE MEAN WAIT TIME FOP RESOUPCE 8263

Figure 7-10. Sample Forn for Selecting Plots

1. CUMULATII1E MEAN WkIT TIME FOP RESOURCE 8182
=2. CUMIJLHTI'E MEAN WHIT TIME FOP RESOURfCE 8283

650 .C.

617 .00- -
S

480.00.

411C1..OC I
3430.00 -

2740 .00C

2,9,.09' OO

C1 t0 0b 0 C1 -60 .00 9000 .000 12000.00 15000 .0"
1500 .000 45u0 . 000 5000 10500 .00 13500 . .

CLOCK In M EC0r,,,S -.

.) ?. .. . _ _

Figure 7-11. Sample Plot

7-23

2,. .. '.'-,- .*. Z..x. .%' 5...,;.c ;-* ' .,>-. --. ,.. -. *..* -- :-.'~ :b "," ,---v-*,r-,-'U'

Il
W p.

AUI / SAVE V.-

7.13 AUI COMMAND: SAVE

SAVE is used to save current plot definitions or plot data and transfer
them to the Analysis database.

COMMAND SYNTAX:

SAVE i settype l, j setname , tdescription] .. .

where: '.

Isettypel is 4'

1. DEF to save plot definitions, or

2. PLOT to save plot data.

jsetnamej 1 to 8 character name to be given to the set.

[description] is a description of the set. h

FUNCTION RESULT:

Plot definitions or plot data are flagged to be saved in the Analysis %
database when the Analysis session is terminated. If Jsetname already
exists, the user is queried to reuse the old set. A "yes" response will
replace the old set with the new set. A "no" response will cause a propt
for a new set name.

.% ,.

7'

1%

"a'

7-24

P -- ,,

,a:,

AUI / SETBREAK

7.14 AUI COWt11AND: SETBREAK

The SETBREAK comand allows the user to set a single breakpoint in the
simulation run that is executed when a defined relationship has been
satisfied.

COMMAND SYNTAX:

SETBREAK lentity-typei, entity-namel Irel-operi ,ivalueI

SET

where:

Jentity-typej is a required parameter indicating which type of entity is
to be tested (Variable, Resource, or Process).

Jentity-namej is a required parameter indicating the name of the entity to
be tested.

Irel-operi is a required parameter indicating the relational operator (EQ,
NE, LE, GT, GE, LT) of the test.

jvaluej is a required parameter used to set the value for which the named
entity is to be tested. This value may be expressed in one to twelve

digits, and includes the value zero.

FUNCT ION RESUu:

A breakpoint is usually used in verification of a model or to examine
Variable values. Typically, a simulation run executes start to finish and
does not allow the user to examine the simulation state at specific times
during simulation. The breakpoint allows the user to halt the simulation '_
and examine its state based upon the value of some system element.

This comnmand causes an attribute form to be displayed, from which the user
must select one attribute. The list of attributes depends on the
entity-type selected.

When the attribute form has been entered, a statistics form is displayed,
from which the usc'_ must select one statistic.

If there is only one2 hoice for either an attribute or a statistic, the
form is not displayed. Attribute and statistic forms are shown in figures
7-5, 7-7, and 7-8.

This cor-nand is valid at the beginning of a simulation period or at a
breakpoint.

When a breakpoint is reached, it is automatically cleared.

7-25

'~. '%~ w .4%0

i"p

AUI / UNITS

7.15 AUI COMMAND: UNITS

The UNITS conmmand is used to change the time units that are used in the
display of output data from the simulation, namely plot diagrams, the output
report and trace output.

COMMAND SYNTAX:

UNITS [unit-typei

U

where:

Junit-typej is a required parameter indicating the time units to be used. The
valid entries for this connmand and their abbreviations and meanings are as
follows:

Ccmmand entry Meaning
nseconds (ns) - nanoseconds
useconds (us) - microseconds
mseconds (ms) - milliseconds
seconds (s) - seconds
minutes (W) - minutes
hours (h) - hours
days (d) - days

FUNC IION RESULT:

The output and trace report will be written using the time units most recently
specified by the user before the report was generated. Normally these are the
units specified at the start of the simulation. If the user does not make use
of the UNITS ccmmand, the units specified as OUTPUT UNITS in the Scenario
entity will be used. The user can change the units used to display plot data

anytime during the AUI session; i.e., the UNITS command will always affect the
plot display, but will only affect the written reports if they have not been
generated yet.

7'6

7-26

.. . . . d " " . " - ' " "" " " , ' .. % '

I!

7.16 TERMINATION OF AN AUI SESSION .4

An AUT session is terminated and control is transferred to the AISIM READM
level through the command: .4-

END

FUN(CrION RESULT:

When the END command is issued, any plot data or plot definitions which
t e user saved during the AUI session are placed in the user's Analysis
database. Any attempts to reuse plot data or plot definition sets are
resolved at this time. The user is then returned to the AISIM READY
level.

.5

-.

I.

5%*

'

"t**

SECTION 8

REPLOT USER INTERFACE (RUJI)

rhe Replot User Interface (RUI) allowq the user to:

(1) plot data saved from previous analysis runs,

(2) to delete old plot data and plot definition sets from the data
base.

(3) create new plot data sets from data previously saved in separate
plot data sets.

When plot data is retrieved from the Analysis database via the GET command
(see section 8.4), the plot data is stored in a temporary plotset. This
temporary plotset exists for the current Replot session only. Data from
different Analysis runs may be retrieved from the database. All of the
data is then stored t(jether in the temporary plotset, and may be plotted
on the same graph. The SAVE command (see section 8.8) will store all of the
Jta in the temporary plotset into a new, permanent plotset in the analysis
database. The temporary plotset can be cleared out (i.e., plot data in it is
deleted) using the CLEAR comnmand (see section 8.1). The CLEAR command does
not affect perTnanent data stored in the database.

Once displayed on the terminal, plots can be transferred to a hardcopy
device (see appendix A.4).

The RUI level cniands are described in detail on the following pages.

.14

I7

-1 VZ Q01.

* CLEAR
DELETE i.set typei,isetnamej
DEL

END

GET PLOT, ise t-name

HELP [subtopicl,...,AsubtopicI
HELP (@topic] ,[topic-naoe], [subtopici ,. .. , [subtopic]

LIST Jentity-typej
L

PLOT

SAVE PLOT,iset-namej, [description]
s

UNITS junit-typel
U

Figure 8-1. RUI Commuand Summnary

8-2

C-22

RUI / CLEAR

8.1 RUI COMMAND: CLEAR

CLEAR is used to delete all of the plot data from the temporary plotset and to V
clear te screen. %

COIMAND SYNTAX:

V
CLEAR *".'

FUNCTION RESULT: J

The temporary plot data set is emptied, and the screen is cleared. Plots

saved in the database are unaffected.

.-

.- "

I

4-

.4
~- 3 *44-'

',

.y.

/ I - i 1 i 4I .-Ili i4 - i* • i "

E%

RUI / DELETE

8.2 RUI CLMMAND: DELELTE

DELETE is used to delete a set of plot definitions or plot data Erom the
Analysis data base.

COMMAND SYNTAX:

DELETE [settypel,isetnamej

DEL

where:

[settypel is:

DEF to delete plot definitions, or

PLOT to delete plot data.

Isetname! is the name of the set to be deleted.

FUCTION RESULTS:

The specified set of plot data or plot definitions are deleted from the
Analysis data base. The current temporary plot set is unaffected.

8'

4'.

'4.>

,.

%P

RUI E END

I

8.3 RUI COMMAND: END

EtD is used to exit the RUI.

CCMMNND SYTAX:
I

END6

Futoar iw RESLU:

The user is returned to the AISIM READY level.

%,

B.

4

S

p.,

,

,.-4

RU I / GET

3.4 RUT COMMAND: GET

GCT is used to retrieve plots from a set of plot data in the data base and to

ma~ke it part of the current set of plots to be displayed by the PLOT cormmand.

COMMAND SYMMA:

GETr PWTr, [set-nane

where:

iset-nanel is the name of the set containing the desired plot data.

FUNCTION RESULT:

The sot of available plots is displayed. The user is then prompted for 5

the plot(s) to be retrieved for use by the PLOT? crurnand.

The names of the plot data sets may be listed using the LIST cornnd (see
section 8.6).

a77

a,8-6

- . . - - . .. p -. " -. -. • , . _ -. .- -. "-. .

%

RUI / HELP

8.5 RUI CCMMAND: HELP

The HELP command provides the user with access to help information about the
current RUI interface and about other aspects of the AISIM system.

CCMMAND SYNTAX:

HELP [subtopic] ,...,[subtopic]

HELP [@topicj ,[topic-name] ,[subtopic],... ,[subtopic]

where:

[subtopic] is an optional parameter indicating the name of a subtopic about

which the user would like information. Successive subtopics contain more
detailed information.

[@topic] is an optional parameter indicating that the top level topic should
not be the current function but should be as specified. Available HELP topics

are: |

topic Acceptable Abbreviation

FUNCTION LEVEL F e %

CONCEPT C %
GUIDELINE G

PROCEDURE P
NOTE N '.'

[topic-name] is an optional parameter indicating the name for the new top
level topic.

FUNCTION RESULT:

If no path is specified, help information on the RUI function is displayed.
The commands acceptable at the current RUI level of operation are listed as
subtopics indicating that further help is available on them. HELP with no
path specified displays the RUI help message text and available subtopics,
followed by the prompt:

Subtopic?

If you type in a subtopic name, a HELP message on the subtopic will be
displayed. If one or more subtopics exist at this level, NELP will prompt you
for another subtopic allowing you to see additional help information.
Pressing a <cr> will terminate your descent for additional help.

If you know precisely what information you need, you can access it directly by
including a path parameter which specifies the subtopics to move down through
to locate the help message. Each subtopic listed in the path must be p
separated from the previous by a comma.

8-7

;%.

After you have located the help information you wanted and prior to
terminating your initial request for help, the system will prompt you for
another topic. The help topic initially is the AISIM function you invoked
help from. You can continue to view information on this topic-name by simply
entering another subtopic path. Information on other AISIM functions, AISIM
modeling concepts, and user-supplied instruction can be obtained by changing
the help topic. You can change the help topic by typing the special character
"@" followed by the new top level HELP topic and the topic-name. Once again
you can specify a subtopic path to the information you want. If you are not
aware of the topic-names under a specific topic, entering the topic parameter
will display a message listing the possible topic names.

8-

I'

V.

@ "i i ' " -,'''- " " " 'i' 'f' '2:',' ' '['' ''-' . r •. ', " " ,, . .

RUI / LIST

8.6 RUI CO MAND: LIST

LIST is used to list all entities of the specified type.

CCMMAND SYNTAX:
LIST [entity-typej

,. where:

.entity-typel is a required parameter indicating a valid entity type. It
- can be one of the following:

DEF to list plot definition sets

PLOT to list plot data sets

TITLE to list current plot titles

FUf TION RESULTS:

Names of all entities of the requested type are displayed.

8.9

N,.%

N. '

N.,,

,.

IN, 8-9

V4

ZeS%

RUI / PLOT

8.7 RUI COMMAND: PLOT
I.

The PL0T command is used to display a plot of the activity of an entity.

COMMAND SYNTAX:,

PLOT

FUNCT ION RESULT:

The set of available plots is displayed. The user is then prompted for
the plot(s) to be graphed.

When the selected plot titles have been entered, the appropriate plot is
displayed. Each of the plots is produced in a unique line pattern. If
only one plot is defined, it will be displayed with no prompting.

Once displayed on the terminal, plots can be transferred to a hardcopy N

device (see appendix A.4).

-1,0

p. "

..,

.i

a,

'-a.

8- 0 %

- -~7- -. 7 . - . --i
RUI / SAVE

8.8 RUI COMMAND: SAVE

The SAVE command is used to save the data that is being held in the current
temporary plot data set into a permanent plot data set in the database.

COt4MAND SYNTAX:

SAVE PLOfiset-name], [description]

S

where:

iset-namei is a 1 to 8 character name to be given to the set

[description] is a description of the set

FUDCTION RESULT:

The plot data contained in the temporary plot data set (as a result of
previous GET PLOT commands) is saved into the new plot data set. This command
enables the user to combine plots fran various simulation runs into a single
plot data set.

I Ve

8'1

-op

8-11

RUI / UNITS

8.9 RUI COMMAND: UNITS

The UNITS ccmmand is used to change the time units used in displaying plot
data.

CcMMAND SYNTAX:

UNITS Junit-typej

U .

where:

Junit-typej is a required parameter indicating the tim units to be used. The
valid entries for this command and their abbreviations and meanings are as
follows:

Coamand entry Meaning I

nseconds (ns) - nanoseconds
useconds (us) - microseconds
mseconds (ins) - milliseconds
seconds (s) - seconds
minutes (i) - minutes
hours (h) - hours
days (d) - days

FUNCTION RESULT:

The time units used during the display of plot data are changed to the
specified value.

af11

3-12

4'.ft

".1

'3-12

-.-

4r

SECTION 9

HARDCOPY USER IrTERFACE (HUI)

The Hardcopy User Interface (HUI) is used to plot the flowcharts for one,
several, or all Processes in the specifted project database. In order for
the Hardcopy Function to be exercised, the following conditions must be in
effect:

For an HP2647 terminal:

i. An HP2631G Graphics Printer must be connected to the HP2647A
Graphics Terminal with the HP-IB communications bus.

2. The HP-IB bus address of the printer must be set to one (1).

3. The printer must be turned on and set to ON LINE mode.

4. For proper formatting, the length of the paper in the printer
must be either 8 1/2 inches or 11 inches long.

For a TEK4105 terminal:

1. A TEK4695 graphics copier must be connected to the TEK4105
terminal.

For an HP2623 terminal:

1. The internal printer must be functional.

The HUI is entered from the AISIM READY level by typing the command:

HCOPY [PROJECT(project)] [TERM(terminal)]

whe re:

[PRJECt(project)] is an optional parameter indicating the project
database with the Processes of interest. If omitted, the project is
assumrJ to be the last project specified in a previous AIS-M READY level
comrand.

[TERM(terminal)] is an optional parameter irdicating the type of terminal

the user is logged on to. If omitted], the terminal type is assumed to be
the last terminal type specified. The valid terminal types are tne
following:

IP - HP2647A terminal
HP23 - HP2623 terninal
TEK - TEK4IJ5 terminal

9-1

AM

MA V_ 1 -~ 1 V ... ,,/P.I~,*'* .%.V.% q
AO- - '

The first informLtion that tnie HUI requests is:

PLOT ALL THE PROCESSES N [ATABASE? (YES OR NO)

The user responds with "NO" to specify selectei Processes for plotting. A
"YES" response will cause the system to automatically plot all o the
Processes contained in the project data base.

The system then requests information about the printing medium for an -

HP2647A terminal:

ENTER PRINTER PAGE SIZE (A/B):
A) 8 1/2 INCHES
B) 11 INCHES. .J.

LENGTH=

Depending on the paper in the graphics printer, the user responds by
entering "A" or "B". This information is used by the HUI to center thee
Process graphics on the page and to insure correct form feeding. Entering
any other option besides "A" or "B" causes the prompt to be reissued.

The user is then instructed to:

POSITION [HE PAPER PERFORATION ALONG THE T.O.F. INDICATOR
LINE ON THE PRINTER AND DEPRESS THE CARRIAGE REruRN.

By doing this, the user suts up the proper alignment of the paper in the
printer and initiates oxecution of the Hardcopy plotting software.

When the cirriage return has been entered, the HU[I begins the plotting
procedure by initializing the HP2631G printer with the correct form
inforration. This initialization is usually characterized by a rapid %
rv, ent of the print head.

It the user is on an HP2623 terminal, only the following prompt occurs to
start the Hardcopy operation:

P'[TLON TH PAPER P.RFOiAriON ALONG THE r.O.F. INDICATOR
LINE ON THE PRINFER AND DEPRESS THE CARRIAGE REIFURN.

When the user presses the carriage return, AISIM initiates execution of
the daroco)y plottitg software.

Note: the following terminal configuration must be set up on the HP2623
terminal in order t> run the Hardcopy pro-jram. These settings need to be
set only once unless their configuration is changed at s,-r later time. I
First press the following function keys:

<A I DES > ".
<CONFIG KEY
<DATACOMM CONFI(G>

9-2 *:

I

*..*S*'. *% -I

%

a

Tnen L *- Lrougn tne tvrm Jisplay to the

R1:"N P C?:

t oLI. Press t-ne ey -inti, Lie tield reads

XOX XOFF
~?her, tjap to Lhie

tieIA. Press the --w k eys:

KCONF !, KEY

Tab through the fi-,-m t thj

I ka y anJ prtess t-he NE,. F key until. the field reads

YESrhi terminal is now set up for the Hardcopy function.

If the user is on a TEK4105 terminal, the following information is
requested :

1.JTrER PRINTER PAGE SIZE (A,/'B):
A) 8 1/2 INCHES
B) SMALLFR COPY SIZE
LENGfli=

This inforrnmation is used to create standard size flow diagrams or reduced

size diagrams.

The user is then instructed to:

POSITION THE PAPER PERFORATION ALONG FHE T.O.F. INDICATOR
LINE ON THE PRINTER AND DEPRESS CHE (ARRLGE Rl'[IdJR.

When the user presses the carriage return, AISIM initiates execution of
the Hardcopy plotting software.

If the user has ,e.,uested automatic olottiij of a[l ot the Processes, they
are plotted in alphabetic order.

IE the user asked to select Processes, the followin g priopt is given:

PROCISS NAM-S R) PLOT: (CR 7() 'SXI)

9-3

The user then supplies the name of the Process he wishes plotted, followed
by a carriage return. The Process is plotted and the HUI responds with:

<Process name> P UOTED

The system will then give the selection prompt again for another Process
to be plotted. The user continues entering Process names one at a time,
followed by a carriage return, or exits the HUI by entering a carriage
return only.

The way in which the HUI plots a Process in either of the two modes
described above is as follows:

1. The first screen of Primitives in the Process are painted on the
screen of the terminal.

2. The Process name is written at the top of the page.

3. If the first page of the Process is being plotted, the Process
description is also written across the top of the page.

4. The Process graphics are transferred from the terminal screen to
the page in the printer and a form feed is generated.

5. If there are no imore Primitives in the Process, the plotting is
terminated for the Process; otherwise, the terminal screen is
erased, and next six primitives are painted on the screen, and
steps 2 through 5 are repeated.

When the HUI has finished plotting all of the requested Processes, the
message "ALL DONE" is printed and the user is returned to the AISIM READY
level.

-..

:4.

-'p-

9-4
'p

b . ; '.',," " +.>v'../ .. ':' /',"".",',', .:.'.'..'-:.'-'., -'.'..'.. ..._-.. '... 'o. ,. -.-. I+.SI .
I - " ' - +2 P % " -' - - " - - * -

SECTION 10

LIBRARY USER INTERFACE (LUI)

The Library User Interface allows the user to do the following:

1. Move entities from a project database into a storage area called
a "buffer" using the MERGEO(JT sublevel of the LUI.

2. Move entities frm a buffer into the database of another project
usirng the MERGEIN sublevel of the LUI.

3. Move entities from a buffer into a library of entities using the
CHECKIN sublevel of the LUI.

4. Move entities from a library to a buffer using the CHECKOUT
sublevel of the LUI.

5. Convert a version 3.0 or 4.0 project database to a version 5.0
compatible project database.

Two libraries are available. One is a user library in which a user can
place entities for private use. Another is an AISIM system library which
contains models available for public use. Models are groups of AISIM
entities which represent some function or group of functions (see the
message routing submodel, appendix D). There are restrictions on the
placement of entities in the system library because it is desirable to
insure that the public models are not lost or tampered with. For this
reason, general users cannot modify the AISIM system library. Access is
restricted to the AIS[M administrator.

The WIJl sublevel is accessible from the AISIM READY level by issuing the
command:

LIBRARY

The syst:,in will then respond with the pronpt:

LIBRARY READY

and the user ,may invoke any of the five WUI sublevels listed in the LUI
Comnand Summary figure 10-1. Figure 10-2 shows the actions of the various
LUI functions.

10-i

OHECKIN [BUFFER(buffer)) [LIBRARY~library)] [TEF44(terminal)]
CI [B(buffer)] [L(library)] [T(teryrinal)]

CHECKOUr [BUFFER(buffer)] [LIBRARY(library)] [TERM(terminal)]
Co [B(buffer)] [L(library)] [T(terminal)]

CONVERT [PR3ECT(project)] [TE1R4(termina1)) DBVERS(version)
CQNV [P(project)) IT(terminal)] DB(version)

HELP [subtopic] ... *, [subtopic]
HELP (@topic] , [topic-namel , [subtopic] .. * (subtopic]

MERGEIN [PRXTECT (project)] I BUFFER(buffer)] [TEF4(terminal) I
MI [P(project)I [B(buffer)] [T(terminal)]

MEIR3EOUT [PRWCECT(project)] [BUFFER(buf fer)] [TEW~(terminal)]
T40 [P(project)I [B(buffer)] [T(terminal)]

Figure 10-1. LUIi Comimand Stumary

W10-

5, 5.v

* - -. W r..r* ~-------4

Lu V) 0

ko,

Oj 0

00

C3)

o.Aq)

A-.-

u M'

l2'

10-3

LUI / CHECKIN

10.1 LUI COMMAND: CHECKIN
1

To move the contents of the buffer to a library for permanent storage, one

issues the CHECKIN command. The user is prompted for the name of the
miodel to be checked in, as well as an optional reference number and
description.

To enter the CHECKIN sublevel, issue the command:

CHECKIN [BUFFER(buffer)] [LIBRARY(library)] [TER4(terminal)]

CI [B(buffer)] [L(library)] [T(terminal)]

where:

[B(buffer)] is an optional parameter indicating the buffer from which
entities are to be taken. If omitted, the buffer is assumed to be the
last buffer specified in a previous LIBRARY READY level command.

[L(library)] is a required parameter indicating the library into which the
entities are to be entered.

[T(cermirnal)] is an optional parameter indicating the type of terminal the
user is logged on to. If omitted, the terminal type is assumed to be the
last terminal type specified in a previous AIS1M READY or LIBRARY READY
level command. The valid terminal types are the following:

HP - HP2647A or HP2648a terminal
HP23 - HP2623 terminal
TEK - TEK4105 terminal
V - MlOO terminal

FU t ION RESULr:

The system queries the user for a required vxlel name and an optional
document reference number and description. After getting this
intormation, the entities in the buffer are put into the library specified
under the given model name.

P1e

10-4

* .

L I CHECKOUT

10.2 LUI COMMAND: CHECKOUT

To copy a model stored in a library to a buffer, one enters the CHECKOUT
command. At this point the user can obtain a list of the models contained
in the library or a list of the given entity types contained in a named
model through the LIST command (see section 10.2.5). Models are copied
individually through the EXTRACT command which specifies the model to be

Z. copied. A HELP command is available. The CHECKOUT sublevel comands are
described in detail in sections 10.2.1 through 10.2.5.

To enter the CHECKOUT" sublevel, issue the command:

CHECKOUT [BUFFER(buffer)] [LIBRARY(library)] [TERM(terninal)]

w ,CO [B(buffer)] [L(library)] IT(terminal)]

where:

[B(buffer)] is an optional parameter naming the buffer into which entities

are to be placed. If omitted, the buffer is assumed to be the last bufter
specified in a previous LIBRARY READY command.

[L(library)] is a required parameter indicating the library from which the
entities are to be taken.

IT(terminal)] is an optional parameter indicating the type of terminal the
user is logged on to. If omitted, the terminal type is assumed to be the
last terminal type specified in a previous AISIM READY or LIBRARY READY
level command. 'The valid terminal types are the following:

HP - HP2647A or HP2648A terminal
HP23 - HP2623 terminal
TEK - TEK4105 terminal
VT - VTI00 terminal

k'UXTION RESULf:

The mtdel or models specified by the user are written .ut to the bufl er.
From the buffer they can be included in a project with the "IERGLLN
co-uand.

10-5pp

DELETE irrodel-namel
D

END
E

Ex~rRAcT [nuode -name I
EXT

HELP [@' :p)id , [topic-name] ,[subtopic],. .. , IsubtopicI

LIST lmodel-namel

Figure 10-3. Checkout Command Suffmary

10-6

CHECKOUT / DELETE

10.2.1 CO COMMAND: DELETE

The DELETE command instructs the system to delete a specified model from a
user's library.

COMMAND SYNTAX:

DELETE Imodel-name l

*11 D

where:

!model-namei is the name of the model to be deleted frcm the library.

FUNCTION RESULT:

The specified model is deleted from the library. If a user attempts to
delete a model from the system library, the following message is
displayed: "THIS ACCOUNT IS NOT AUTHORIZED TO MODIFY THE SYSFEm LIBRARY."

10-7

o.

f.i

.o.

10-7 ,

-t

A f• • •

CHECKOUT / END ,

10.2.2 CO COMMAND: END

The END commiand causes the system to exit the CHECKOUT sublevel and return

the user to the LIBRARY READY Level.

COMMAND SYNTAX:

END

E

FUNCTION RESULT: I

If any models were selected for extraction, the entities are written
to a

buffer.

The system then returns to the LIBRARY READY level.

dk
.%

"%,

f."

...

10-8

Is.

-- ." --..,-, ..'."-.... ".",".".",''.'.".". '. .- '. .-' "..'-,; ..p. *-";. ', ,;-'..**....,-.' '. " e 2" <'v** :C'-----< ,

'. .. , .-..... ,...- -. , . - ', ,.

CHECKOUT / EXIRACT

10.2.3 CO COMMAND: EXTRACT

The EXTRACT ccmand instructs the system to copy a model fron a library

into a buffer.

COMMAND SYNTAX:

EXTRACT Imodel-namel

EXT

where:

imodel-nameI is the name of the model to be placed in the buffer.

FUNCTION RESULt':

The model specified is copied from the current library into the current

buffer.

10-9

a, "V

109

- - ,- - -. a,, p-- ~--

CHECKOUT / HELP

10.2.4 CO COMMAND: HELP

The HELP cormiand provides the user with access to help information about the
current CHECKOUT sublevel and about other aspects of the AISIM system.

COMMAND SYNTAX:

HELP [subtopic],...,[subtopic]

HELP [@topic] ,[topic-namel ,[subtopic] ,...,[subtopic]

where:

[subtopic] is an optional parameter indicating the name of a subtopic about
which the user would like information. Successive subtopics contain more

detailed information.

[@topic] is an optional parameter indicating that the top level topic should
not be the current function but should be as specified. Available HELP topics
are:

topic Acceptable Abbreviation

FUNCTION LEVEL F
CONCEPT C
GUIDELINE G
PROCEDURE P
NOTE N

[topic-name] is an optional parameter indicating the name for the new top

level topic.

FU-rTION RESULT:

If no path is specified, help infoTmation on the CHECKOUT function is
displayed. The ccnmands acceptable at the current CHECKOUT level of operation
are listed as subtopics indicating that further help is available on them.
HELP with no path specified displays the CHCCKOUT help message text and
available subtopics, followed by the prompt:

Subtopic?

If you type in a subtopic name, a HELP message on the subtopic will be
displayed. If one or more subtopics exist at this level, HELP will prompt you
for another subtopic allowing you to see additional help information.
Pressing a <cr> will terminate your descent for additional help.

If you know precisely what information you need, you can access it directly by
including a path parameter which specifies the subtopics to nove down through
to locate the help message. Each subtopic listed in the path must be
separated [rom the previous by a conma.

10-10

'4~~7 .
. _% -- M -

After you have located the help information you wanted and prior to
terminating your initial request for help, the system will prompt you for
another topic. The help topic initially is the AISIM function you invoked
help from. You can continue to view information on this topic-name by simply
entering another subtopic path. Information on other AISIM functions, AISIM
modeling concepts, and user-supplied instruction can be obtained by changiit,
the help topic. You can change the help topic by typing the special character S

"@" followed by the new top level HELP topic and the topic-name. Once again
you can specify a subtopic path to the information you want. If you are not
aware of the topic-names under a specific topic, entering the topic parameter
will display a message listing the possible topic names.

Io

.

ft-

CHECKOUT /LIST

10

10.2.5 CO COMMAND: LIST

The LIST command enables the user to obtain a list of the models contained
in a system or user library, or to list the entities in a particular *

m'e

-- COMMAND SYNTAX:

LIST C JLdeTl-name j

LIST:

L

whe re :Thodel-T is enas the me of a model in the library on

is a literal parameter, indicating all models in the libra.ul

FUNCT ION RESULT:-

if the parameter Jmodelnamel is used, the system will display a list of
the names of the entities in the indicated model. After the names of each
entity type are displayed, the user is given the option of continuing to i
list model entities or of returning to the CHECKOUT ready level. If te

parameter *is used, the system will display a list of the names of all .
the models in the library.

,-.

LIST *

LUI / CONVER=

10.3 LUI COMMAND: CONVERT

The CONVERT command enables a user to convert a version 3.0 or 4.0 project
database into a 5.0-ccmpatible database. Old databases are incompatible with
version 5.0, so all old databases must be converted before they can be use,
with version 5.0.

COMMAND SYNTAX:

CONVERT [PROJECT(project)] [TERM(terminal)] DBVERS(version)

CONV [P(project)] [T(terminal)] DBV(version)

where:

[P(project)] is a required parameter indicating the name of the project
being converted.

[T(terminal)] is an optional parameter indicating the type of terminal the
user is logged on to. If omitted, the terminal type is assumed to be the
last terminal type specified in a previous AISIM READY or LIBRARY READY
level comrnand. The valid terminal types are the following:

HP - HP2647A or HP2648A terminal
HP23 - HP2623 terminal
TEK - TEK4105 terminal
Vy - VTI00 terminal

DBVERS(version) is a required parameter indicating the version of the data

base being converted. The valid versions are V30 and V40.

FUtWTION RESULT:

The project database project.DBF is saved in a database called
project.V30 or project.V40 based on its version. The project database is then
converted to a version 5.0 database and stored in the project naxe"
project.DBF. This database is now suitable for use with all AISAM version 5.0
functions.

10-13

-, ~ - . -. ~ "f.~% ' M ~ ~ ~ **.*.5'"*,, ,,.**

.UI / MEICEIN

10.4 LUI COMMAND: HELP

The HELP comand provides the user with access to help information about the "
current LUI sublevel and about other aspects of the AISIM system.

do

COM4MAND SY~rAX.

HELP [subtopic ,...,[subtopic]

HELP [@topic], [topic-name],[subtopic],...,[subtopic]

whe re:

[subtopicl is an optional parameter indicating the name of a subtopic about
which the user would like information. Successive subtopics contain more
detailed information.

[@topic] is an optional parameter indicating that the top level topic should

not be the current function but should be as specified. Available HELP topics
are:

topic Acceptable Abbreviation

FUNCTION LEVEL F
CONCEFT C
GUIDELINE G
PROCEDURE P
NOTE N

[topic-name] is an optional parameter indicating the name for the new top ,.
level topic.

FUNCTION RESULT:

If no path is specified help, information on the LUI function is displayed.
The commands acceptable at the current LUI level of operation are listed as
subtopics indicating that further help is available on them. HELP with no
path specified displays the LUI help message text and available subtopics,
followed by the prompt:

Subtopic?

If you type in a subtopic name, a HELP message on the subtopic will be
displayed. If one or more subtopics exist at this level, HELP will pronpt you
for another subtopic allowing you to see additional help information.
Pressing a <cr> will terminate your descent for additional help.

If you know precisely what information you need, you can access it directly by
including a path parametor which specifies the subtopics to move down through
to locate the help message. Each subtopic listed in the path must be
separated from the previous by a comia.

10-14

F

* ','j ' 'I'I'., ,,#. .. , ..'. .,S.. . s...

After you have located the help information you wanted and prior to

terminating your initial request for help, the system will prompt you for
another topic. The help topic initially is the AISIM function you invoked
help frcm. You can continue to view information on this topic-name by siaLply
entering another subtopic path. Information on other AISIM functions, AISIM
modeling concepts, and user-supplied instruction can be obtained by changing
the help topic. You can change the help topic by typing the special charLAter
"@" followed by the new top level HELP topic and the topic-name. Once again
you can specify a subtopic path to the information you want. If you are not
aware of the topic-names under a specific topic, entering the topic parameter
will display a message listing the possible topic names.

'-" 0-15

lpe

LUI /MERGEIN

10.5 LUI COMMAND: MERGEIN

To move the contents of a buffer to a project database, one enters the
MERUEIN comaind, specifying the name of the buffer and the name of the
project into whose database the buffer contents are to be copied.

COMMAND SYNTAX:

MERGEIN [PRCLECT(project)) [BUFFER(buffer)] [TE 4(terminal)]

MI [P(project)] [B(buffer)] [T(terminal)] .

where:

[P(project)] is a required parameter indicating the name of the project
into which the entities are to be merged.

[B(buffer)] is an optional parameter indicating the name of the buffer in
which the entities are stored. If omitted, the buffer is assumed to be
the last buffer specified in a previous LIBRARY READY comand.

[T(terminal)] is an optional parameter indicating the type of terminal the
user is logged on to. If cmitted, the terminal type is assumed to be thelast terminal type specified in a previous AISIM READY or LIBRARY READY

level command. The valid terminal types are the following:

HP - HP2647A or HP2648A terminal
HP23 - HP2623A terminal
TEK - TEK4105 terminal
VT - VTlOO terminal

FUNCTION RESULT:

If no entity in the buffer is the same as an entity already present in the
database, the system responds:

0 CONFLICTS HAVE BEEN DETECTED IN MERG3EIN INITIALIZATION

in which case the copying of the buffer contents will be completed and the
user will be returned to the LIBRARY READY level. If one or more names of
entities conflict with ones already in the project database, the user will
be prompted with:

n CONFLICTS HAVE BEEN DETECTED IN MERGEIN INITIALIZATION

where "n" is the number of conflicts. The system then asks:

DO YOU WISH TO RESOLVE THESE CONFLICTS?

Answering "no" aborts the Mergein. If the answer is "yes", the system
will then present the name of an entity which stands in conflict.

10-16

The user now has three command options to resolve the naming conflict.
First, he may command that the entity in the database be deleted in favor
of the one of the same name in the buffer. This is done by entering .

REPLACE (RP). Secondly, he may command that the entity in the buffer I
which aroused the naming conflict be disregarded in the transferral from
the buffer to the database. This is done by issuing the command IGNORE
(IG). Thirdly, one may resolve the naming conflict by giving the entity
in the buffer a new name. This is done by means of the command RENAME
(RN) whose one parameter is the new name the user wishes to give the
entity. If the user should select as a new name one that is also being
used, the system will respond with a prompt for a different name. These
commands are described in detail in sections 10.5.1 through 10.5.6.

This cycle of naming conflict resolution will be repeated until all of the
naming conflicts have been resolved. The system will then tell the user
that MERCEIN initialization has been completed, do the MEREIN and S
automatically return the user to the LIBRARY READY level.

NOTE: Resources associated with an architecture are not subject to the
REPLACE command.

END
E '.4.

HELP [subtopic] ,...,[subtopic]
HELP [@topic] , [topic-nam] ,[subtopic],...,[subtopic]

IGNORE

IG

INFO

RENAME inameli
RN

REPLACE
RP

Figure 10-4. Mergein Camand SurmarI

- •-1

• p

UV

Si s
MERGEIN / END '

10.5.1 MI COMMAND: END

The END ccmmand, issued at the MERGEIN sublevel causes the system to exit
the MERGEIN sublevel and returns the user to the LIBRARY READY level. is

COMMAND SYNTAX:

END

E

FUNCTION RESULT:

The system returns to the LIBRARY READY level.

1i
is.,

is

"10-i8 O"
"
.

'.......''v.5

MEIR3EIN /HELP

10.5.2 MI COMMAND: HELP

The HELP command provides the user with access to help information about the

current MERGEIN sublevel and about other aspects of the AISIM system.

cCMAND SYNTAX:

HELP [subtopic] ,..., [subtopic]

HELP [@topic] , [topic-name] ,[subtopic],... , [subtopic] o

w'he e :

[suntopic] is an optional parameter indicating the name of a subtopic about
which the user would like information. Successive subtopics contain more
Jetailed information.

[@topic] is an optional parameter indicating that the top level topic should
not be the current function but should be as specified. Available HELP topics
are:

topic Acceptable Abbreviation

FUNCTION LEVEL F
CONCEPT C
GUIDELINE G
PROCEDURE P
NOTE N

[topic-name] is an optional parameter indicating the name for the new top
level topic.

FUCTION RESULT:

If no path is specified, help information on the MI function is displayed.
The commands acceptable at the current MI level of operation are listed as
subtopics indicating that further help is available on them. HELP with no
path specified displays the MI help message text and available subtopics,
followed by the prompt:

Subtopic?

If you type in a subtopic name, a HELP message on the subtopic will be
displayed. If one or morae subtooics exist at tLis level, HELP will prompt you
for another subtopic allowing you to ree additional help infor-mtion.
Pressing a <cr> will terminate your descent for additional help.

if you know precisely what information you need, you can ac(css it directly by
including a path parameter which spccifies the subtopics to n)ve down through
to locate the help message. Each subtopic listed in tiie path must be
separat,?A from the previous by a ccAmw.

10-19

.'-,'-.- .-... ,.. ,- .'.>'A ', - ,- _. '' -"A '',. , - " . ..-. ,'_,, -, -,.-" ?, ." -." .-." ,. .,",.- ~ ,. . -"~ -"

After you have located the help information you wanted and prior to
terminating your initial request for help, the system will prompt you for
another topic. The help topic initially is the AISIM function you invoked
help from. You can continue to view information on this topic-name by sinply
entering another subtopic path. Information on other AISIM functions, AISIM
modeling concepts, and user-supplied instruction can be obtained by changing
the help topic. You can change the help topic by typing the special character
"@" followed by the new top level HELP topic and the topic-name. Once again
you can specify a subtopic path to the information you want. If you are not
aware of the topic-names under a specific topic, entering the topic parameter
will display a message listing the possible topic names.

1.02

10-20

I " " - " " ' "%*UI4.' . " ,"; "v;"a, .. -<,"":"iz.: ?-' .' .":-:-.

tMEIREIN / IGNORE

10.5.3 MI COMMAND: IGNORE P

The IGNORE camiand enables the user to resolve any naming conflicts
encountered at the MERGEIN sublevel in favor of the entities that already
exist in the target database.

C(1MAND SYNTAX:

IGNORE

IG

FUNCTION RESULT:

The entity indicated by the prcopt is not copied into the project
database. The system then prcmpts the user with the next naming conflict,
if any, and proceeds with MERGEIN operation.

10-21 '

a".

a.
a

'a- a'

a- a'

"

MERGEIN / INFO

10.5.4 MI COMMAND: INFO

The INFO command furnishes the user with information on the options ".
available to resolve naming conflicts encountered in the MERGEIN sublevel.

COMMAND SYNTAX: .

INFO

IN
-a,,

FUNCTION RESULT:

The screen displays the following information:

IGNDRE: THIS OPTION CAUSES THE NAMED ENTITY IN THE BUFFER TO BE EXCLUDED
FIOM THE MERGEIN OPERATION

RENAME: THIS OPTION CHANGES ALL OCCJRANCES OF THE ENTITY NAME IN THE
BUFFER TO THE NAME SPECIFIED BY THE USER

REPLACE: THIS OPTION DELETES THE NAMED ENTITY FROM THE USER DATA BASE,
ALLOWING THE ENTITY IN THE BUFFER TO BE MERGED IN

END: THIS OPTION TEF4INATES THE MERGEIN PRE-PROCESSING WITHOUT RESOLVING
ANY MORE NAMING CONFLICTS AND RETURNS TO THE LUI READY LEVEL

.0

p° p.

10-22 '.

-,zv FVV1. - - ~ - -.A .~ Mr;V.kktb -z,

MEEIN / RENAME

10.5.5 MI COMMAND: RENAME

The RENAME ccrnnand allows the user to resolve a naming conflict
encountered during the MERGEIN operation by giving entities in the buffer
a unique name.

COMMAND SYNTAX:

RENAME inameli
Q5

RN

where:

Inamell is the new name the entity is to be given.

FUNCTION RESULT:

The system checks to see whether the new name given to the entity creates
any naming conflicts. If it does, the system will prompt the user to that
effect, and await a new name. If the new name does not create any
conflicts, the entity is copied into the project database under its new
name. If there are naming conflicts with further entities, the system
then prcrnpts the user for their resolution. If there are no remaining
naming conflicts, the MERGEIN operation begins.

.

.

10-23

I.5-.

MEICEIN /REPLACE

10.5.6 MI COMMAND: REPLACE

The REPLACE ccmmand enables the user to resolve a naming conflict
encountered in the MERGEIN sublevel in favor of entities that exist in the
buffer.

COMMAND SYNTAX-

REPLACE

RP

FUNCTION RESULT:

The entity indicated in the prcmpt is written into the database and the
old entity of the same nam is deleted. The system then proceeds to
consideration of the next naming conflict if any exist. Otherwise, the
MERGEIN operation begins.

10-24

102

LUI /MEIR3EXUT
II.

10.6 LUI COMMAND: MERGEOUT

When the user wishes to place entities from a project database into a
buffer, he does so via the MERGEOUT ccrmand, specifying the name of the
project and the name of the buffer into which the entities are to be
copied. Entities in the project are copied one at a time by name through
the SELECT command. If the user needs a list of the entities of a given
type, he may obtain one through the LIST ccrmand. Also available here is
the HELP command which provides a menu of the other available commands.
The END command will return the user to the LIBRARY READY level. These
commands are described in detail in sections 10.6.1 through 10.6.4.

To obtain access to the MERGEOUT sublevel, issue the comnand,

MERGEOUT [PRDJECT(project)] [BUFFER(buffer)] [TERM(terminal)]

MO [P(project)] [B(buffer] [T(terminal)]

where:

[P(project)] is a required parameter indicating the name of the project
from which the entities are to be copied.

[B(buffer)] is an optional parameter indicating the name of the buffer
into which the entities are to be transferred are stored. If omitted, the
buffer is assumed to be the last buffer specified in a previous LIBRARY
READY level command.

[T(terminal)] is an optional parameter indicating the type of terminal the
user is logged on to. If omitted, the terminal type is assumed to be the
last terminal type specified in a previous AISIM READY or LIBRARY READYlevel conmand. The valid terminal types are the following:

HP - HP2647A or HP2648A terminal
HP23 - HP2623 terminal
TEK - TEK4105 terminal
VT - VMlOO terminal

FUNcTION RESULT:

The user is given a prompt, from which he can issue one of the
following comnands.

1) LIST Jentity-typel, to list entities in project database.

2) SELECT Jentity-typeijentity-namel, to select an entity to be
merged out of the project database.

3) END, which will t inate the selection of entities to be copied.

10-25

-V.

END
E

HELP (subtopic,..., [subtopic]
HELP [@topic], [topic-rianI, [subtopic],..., [subtopic]

LIST [entity-typel/SEL
L

SELECT tentity-type1 ,lentity-naTe1
S

Figure 10-5. Mergeout Cciiimand Summary

AL

10-26

S

MEW.EOT / END

10.6.1 MO COMMAND: END

The END command terminates the session at the MERGEOUT sublevel and causes
entities in the current project database which have been flagged by the
SELECE command to be copied into the current buffer.

.

COMMAND SYNTAX:

END

FUNCTION RESULT:

The user will be prompted with the question:

DO YOU WANT TO LIST YOUR SELECTIONS ON THE SCREEN?

*A "no" answer will cause the Mergeout procedure to take place. When all
of the flagged entities have been copied into the buffer the system will
return to the LIBRARY READY level.

A "yes" answer will produce a list of the entities flagged in the SELECT
command. The user will then be prompted as to whether he wishes to
proceed with the Mergeout operation. A "yes" answer to this second
question will cause the flagged entities to be copied into the current
buffer and the system will return to the LIBRARY READY level. A "no"
answer will return the user immediately to the LIBRARY READY level.

WI-

10-27 !

Ji.
A.4. .',.'-'-'- .'. . ,-, _-;-,> -," "-".-'.',''',". 7"> ; '-.'- . _7".'',-. ''_'-,.'_''-.'- "" -,.---,;-:

f--

ME1R3EOUT /HELP

10.6.2 MO COMMAND: HELP

The HELP command provides the user with access to help information about the
current MERFCOT sublevel and about other aspects of the AISIM system.

COMMAND SYNTAX:

HELP [subtopicl,...,(subtopic)
HELP [@topic] ,[topic-namel, [subtopic,...,[subtopic]

where:

[subtopic) is an optional parameter indicating the name of a subtopic about
which the user would like information. Successive subtopics contain more
detailed information.

[@topic] is an optional parameter indicating that the top level topic should
not be the current function but should be as specified. Available HELP topics
are:

topic Acceptable Abbreviation

FUNCTION LEVEL F .

CONCEPT C
GUIDELINE G
PROCEDURE P
NOTE N

(topic-name] is an optional parameter indicating the name for the new top
level topic.

FUNCTION RESULT:

If no path is specified, help information on the MO function is displayed.
The commands acceptable at the current MO level of operation are listed as
subtopics indicating that further help is available on them. HELP with no
path specified displays the MO help message text and available subtopics,
followed by the prcnpt:

Subtopic?

If you type in a subtopic name, a HELP message on the subtopic will be
displayed. IE one or more subtopics exist at this level, HELP will prompt you
for another subtopic allowing you to see additional help information.
Pressing a <cr> will terminate your descent for additional help.

If you know precisely what information you need, you can access it directly by
including a path parameter which specifies the subtopics to move down through
to locate the help message. Each subtopic listed in the path must be
separated from the previous by a camma.

10-28

After you have located the help information you wanted and prior to
terminating your initial request for help, the system will prompt you for
another topic. The help topic initially is the AISIM function you invoked
help from. You can continue to view information on this topic-name by simply
entering another subtopic path. Information on other AISIM functions, AISIM
modeling concepts, and user-supplied instruction can be obtained by changing,
the help topic. You can change the help topic by typing the special character
"@" followed by the new top level HELP topic and the topic-name. Once again
you can specify a subtopic path to the information you want. If you are not
,ware of the topic-names under a specific topic, entering the topic parameter
w.11 display a message listing the possible topic names.

P 06

w. ,

%,.

%

1 9..'

%

N

%.'

5%J

i0-29

-- U-

MERGEOUT / LIST

10.•6.3 MO COMMAND: LIST

The LIST ccmmand enables the user to obtain a list of the names of the
entities of a given type that are contained in the current project.

COMMAND SYNTAX:

LIST [entity-typel
LIST SEL
L

where:

[entity-typel is the type of entity. The valid entity types are the
following:

Action A
I

Constant C

Item I

Process P lo
9

Queue Q

Resource R

Table T
I

Variable V

SEL indicates that the user wishes to list the entities selected up to that
point. .

FUNCT ION RESULT:

The screen will display a list of the names of the entities of the
specified type in the current project or the names of the entities currently
selected for mergeout.

10-30l

a

- ~ .. A I.V. - . *-- .ft 4 S &

MERGEOUT / SELE)CT

10.6.4 MO CCMMAND: SELECT

The SELECT ca nmand allows the user to specify which entities are to be
merged out of a project database to a buffer. Scenarios and Loads cannot
be selected.

COMMAND SYNTAX:

SELECT Jentity-typel, [entity-name i
S

where:

Jentity-typel is the type of entity to be merged out. The valid entity

types are the following:

Action A

Constant C

Item I

Process P

Queue Q

Resource R

Table T

Variable V

[entity-namel is the name of the entity to be merged out.

FUNCTION RESULT:

The specified entity is flagged for the Mergeout operation. The operation
will take place only when the END comnand is issued.

.0

SECTION 11

HELP EDITOR INTERFACE

At the HEI level of operation, and its lower level, commands are available to

request information about the use of various AISIM functions and information

pertinent to various AISIM concepts (HELP) and to generate user supplied help

information (UPDATE). The UPD sublevel of the HEI is invoked to create and
edit user provided information. This information may cover a wide range of
topics but will fall under three basic headings: notes, guidelines, and
procedures. This instructional information can later be accessed by all AISIM.
users by means of subsequent invocations of the HELP command.

These commands are summarized in the command summary in figure 11-1 and are
described on the pages that follow.

A..

"a.o

ao.

.

.

11.1 HET CO1MMID SUMMARY

END

HELP [subtopic], ... ,[subtopic])
HELP [@topil),[topic-natl ,[subtopic],. .. ,[subtopic]

UPDATE
* U

Figure 11-1. HET Commnd Surmmary

HEI / END

11.1.1 HEI CCMMAND: END

The END command is used to terminate a HEI session

COMMAND SYNTAX:

END

FUNCTION RESULT:

The HEI session is ended, the system will return the AISIM READY level and tch

screen will display

AISIM READY>

11-3

L, 6 I" P -;e.1 - .

HE I HELP

11.12 Nt C)V~~D:HELP .
The HLLP C(lllVklfl WD)i~ '~Iser wi t!j access h~~el[in r- l r ri jLM)A_'

current HLI interface 3nd awt.tr scs)f the MS 'sy-st.em.

IC r * AM .At - JIa

:'I,. i I' r. Tr* r. .

j i r I;Tb

1: -2 .

44 r.l 1

% 10

d[N.c it 1 ce; r . . r e t i. 1 I 4)E' 1 r . *:' . i .C

/OuA t ype inl -i iur)t i nv _ a ltb 3IEP~~,~)n _tie subtop i: W" I

1isplIa-yed. It .one *jr ix.re subtopic s exist at this level, HELP wilIl prI~TV,

fL)r another suibtopic allrywingY -1o-u to see m-4i'ttionial help nwatn
Pressing a cr-' will terminate yo--ur descent for -odditiond! 'ielp.

If you know precisely what information you need, yTX-i can access it- .irectly tby
includingj a path paramet,r which specifies the subtopics to rmve Jown trrotxjgn
to locate the help me~ssage. Each subtopic listed in the path must 5e
ieparated frcan the previous by a axmna.

11-4 .

71&S!.r A

jW W- W,'VWY W VW- V7 W- ']2 ~ - ~~J -M

After you have located the help information you wanted and prior to
termTnating your initial request for help, the system will prcmpt you for
inother tplc. The help topic initially is the AISIM function you invoked
heir frc-n. 'fYci ,can continue t) view information on this topic-name by sinply
entering another sult.pic path. Information on other AISIM functions, AISIM
T. Iv. ..ng ,z, s 3nd user-supplied instruction can be obtained by changir r i
nt. hei t)pi.. :an -change the help topic by typing the special character

S"4" . I iy riew t)p level F{ELP topic and the topic-name. Once again
S : ,i P) " ;)ath t, the infonration you want. If you are not

iwj ,r - t.e i :.i-ne,; irner j sp cf ic topic, enterin; the topic parameter
-. ~ 1,' J '~ * sc 1 t9 I e U4cn1Tp

' %" 'r '%'d... . . .

.11
-p%

-p4

q!

-I

HEI / UPDATE

11.1.3 HEI COMMAND: UPDATE

The UPDATE camnand is used to create an informational help message.

COMMAND SYNTAX:

UPDATE

U

FUNCTION RESULT:

The UPD level of operation is entered. This operation allows the user to
manage user-supplied instruction. A # prompt is provided for the user to
input UPD commands. These cammands are discussed in section 11.2.

1'
55I

11-6

11.2 UPDA.TE (UPD)

The UPD capability augments the current comprehensive multilevel HELP facility
by providing the user the ability to provide user specific information. This
information can potentially cover a wide range of topics under three basic
headings: notes, guidelines, and procedures.

All instruction supplied by the user will be categorized under one of the
above three topics. The latter two may be used to provide information that
can be used to manage and guide the use of AISIM while the notes category can
contain miscellaneous information. The actual decision as to how to decompose
the user-supplied instructional information into these three areas is, of
course, ccmpletely up to the discretion of the user supplying the information.

When creating and editing help topics in the UPD sublevel, the system prompts
the user for information by the use of forms as shown in section 4.2. The
forms editor is the one described in section 6 for the DUI.

While the user is in the UPD, all changes are made to a working copy of the
help database. When the user issues a SAVE command during or at the
conclusion of the session, the working database is copied to the help
database. To avoid potential conflicts with updating the help database, only
one AISIM user is allowed to enter the UPD level at a time. The working
database is created on the current users id and is a fairly large database
file.

$ Note: If error CPYDBO1,Flag=38 occurs while entering UPDATE there is a good
possibility that disk quota on the current id is not sufficient to create the
working copy of the help database.

The UPD level of camnands are described in detail on the following pages.

11-7

11.2.1 UPDATE OtCMMAND SUMMIARY

ADD I topicItopic-name I

CHANGE itooici,itoic-namrel

DELETE i topicl,itop ic-nane
DEL

END

HELP [subtopic,...,[subtopicl
HELP (@topicl ,(topic-naTJ, (subtopic] , (subtopic]

LIST ltopici
L

SAVE
S

Figure 11-2. UPDATE Ccmmndr~ Sunmary

V

.. . .. - b. -. .

UPDATE / ADD

11.2.2 UPDATE COMMAND: ADD

The ADD comiand is used to create an informational help message.

COMMiAND SYNTAX:

ADD ! topic i, itopic-namei

where:

itopic: iS a required parameter indicating any valid user-supplied informarlit)n

"opi.: rnay e any)t the tollrywing:

t.)pic, Acceptaolle Abbrev,.ation

PROCDJLURE P
GU I DF, INE G
JNjFE N

Lt_) ,r-name is a required parameter specifying the name of the new help
int,)r-Toti)n message to be created.

If t4)lcI or topic-name is missirj or invalid, the user is prcMpted for a
valid parameter.

5%

A carriage return in response to the pracpt aborts the carimand, and the user
5-% si returned to the UPD Ready state - 4 prcmpt.

FUNI3T TION RESULT:

The ADD ccrimand will create an inftormation message of the specified type. A
form will be displayed for the user to enter the information.

Up to 20 lines of information may be entered. It less than 20 lines of text
is entered the informational messaJu will be assumed comrplete upon the
* o-currence f)f two 5lank lines. This will eliminate the display of multiple
Si-inK lines when the message is later iccessed tor viewing.

11-9

I I

9.

,'a*

UPDATE / CHANGE

11. 2.3 UPDATE COMMAND: CHANGE

The CHANGE command is used to modify an informationa. help message.

COMMAND SYNTAX:

CHANGE I topic I, I topic-name I I
cm.<

where: .

!topic~is requir, d parameter indicating any valid user-supplied information

Fopic may t any of the following: /

t :,P. Acceptable Abbreviatin

PRCEDJRE P
GUIDELINE G.

N~TE N

,t,-p:-ndZ! is a required parameter specifying the name of the help
inf:rmat,)n message to be modified.

it Itcypicl or Itopic-namI is missing or invalid, the user is prompted for a
valid parameter.

A carriage return in response to the prompt aborts the command, and the user
is returned to the UPD Ready state - # prompt.

FUNQ'TION RESULT: ,.9

The CHNNGE ccrund will display the information message specified on a form
that wi1l allow modification of its contents.

11-10

I.,..
9. I

ii-i0.

UPDATE / DELETE

11.2.4 UPDATE COMMAND: DELETE

The DELETE command is used to remove an informational help message.

COMMAND SYNTAX:

DELETE itcpicI ,itopic-namel

Vp
-DELETE itopicitopic-navel,..., topic-nam

DEL

where:

Jtopicj is a required parameter indicating any valid user supplied information
topic type.

Topic may be any of the following:

topic Acceptable Abbreviation

PROCEDURE P
GUIDELINE G
NOTE N

itopic-name] is a required parameter specifying the name of the help
information message to be modified.

If itopicj or ktopic-namej is missing or invalid, the user is prompted for a
valid parameter.

A carriage return in response to the prcmpt aborts the ccmmand, and the user
is returned to the UPD Ready state - # pranpt.

FUNCTION RESULT:

The DELETE ccarmand will remove the information specified fram the available
user-supplied help messages.

I'..

'pl

li-11 U.

....-----... ' J. 4 ' -... 4 -

UPDATE END

11.2.5 UPDATE COMMAND: END

The END camand terminates an UPDATE session.

COMMAND SYNTAX:

END

F UNCTION RESULT:

The UPDATE session is ended. The working database is closed. If a SAVE
comrand has not been given since the last ADD, DELETE or CHANGE command, the
user is asked if the working database is to be saved. The query is

SAVE (Y/N)?

If the user answers "Y", the working database is saved into the real databaseand the session is ended. Control is passed to the HEI level (level 4). If

the user answers "N", the session is ended and the working database is not
saved. Control is passed to the HEI level. Depressing the RETURN key in
response to the SAVE query aborts the END ccomand, and returns the user to the
UPD level - * prcmpt.

111
'.'.,

'5...,

ll-14 .

UPDATE /HELP

11.2.6 UPDAIE COMMAND: HELP

The HELP ccmmnand provides the user with access to help information about the
current UPD interface and about other aspects of the AISIM system. I
COMMAND SYNTA: :

HELP [subtopic],. .. , [subtopic]

HELP [@topic] , [topic-name],[subtopic] ,...,[subtopic] .

where:

[subtopic] is an optional parameter indicating the name of a subtopic about
which the user would like information. Successive subtopics contain more N.

detailed information.

[@topic] i3 an optional parameter indicating that the top level topic should
not be the current function but should be as specified. Available HELP topics
are:

topic Acceptable Abbreviation

FUNCTIONAL LEVEL F
CONCEPT C
GUIDELINE G
PROCEDUTRE P
NOTE N

[topic-name] is an optional parameter indicating the name for the new topic
level topic.

FUNCTION RESULT:

If no path is specified, help information on the UPD function is displayed.
The commands acceptable at the current UPD level of operation are listed as
subtopics indicating that further help is available on them. HELP with no
path specified displays the UPD help message text and available subtopics,
followed by the prompt:

Subtopic? "N.

If you type in a subtopic name, a HELP message on the subtopic will be
displayed. If one or more subtopics exist at this level, HELP will prompt you
for another subtopic allowing you to seek additional help information. -"
Pressing a <cr> will terminate your descent for additional help.

If you know precisely what information you need, you can access it directly by
including a path parameter which specifies the subtopics to move down throughto locate the help message. Each subtopic listed in the path must be i

separated from the previous by a comma.

11-13

. N%,%~ NN ' N~4~~I 1

After you have located the help information you wanted and prior to
terminating your initial request for help, the system will prcmpt you for
another topic. The help topic initially is the AISIM function you invoked
help from. You can continue to view information on this topic-name by sirly
entering another subtopic path. Information on other AISIM functions, AISIM
modeling concepts, and user-supplied instruction can be obtained by changing
the help topic. You can change the help topic by typing the special character
"0" followed by the new top level HELP topic and the topic-nane. Once again
you can specify a subtopic path to the information you want. If you are not
aware of the topic-nanres under a specific topic, entering the topic parameter
will display a message listing the possible topic names.

11-14

C-?

'',

.. 9

- CC
* .p

ii~i4

11.2.7 UPDATE CCMMAND: LIST

T"he LIST carmnarK i s used to list the infornrutiorfl 1ie:. 7-ssa~es.

CC1MXMD S YNMAX:

LIST tpJ

- where:

,*t i2 is a requirre,-, .),A x1ter 1id ii ..-

to-P~c type.

topi c .&crptr. Ix,.i: an

*P RO E WRE P
&;UIDELINE
NCTE

It itopic; isrns~ r'cid) S'S r*tb

* A carriage retir-ni ~n respo~nseA ; .. g1-* .*

i is re t ured t.o t ne UPLD P4t2Wky st-,itt t r YV

FU LTION RESULT:

The LIST cciTmund wi I1I d i spl3y, the 1!- ne .

the specified type.

W

11-15

7." i , .b G\.". li~', br, I. ,i ' ... '' .: : ... #-".iT n~ ~ ~ . I W ~ .d .V.~.*~C .~.~- m .

J~t~~h SAVE

: ..

in1 UTOATED INTUCTIVE SIMULATION NOD (AISZK) YNX V
VERSIONSO USER'S NE.. (U) HUGHES AJERF co
FUL.LERTOU CA GROUD SYSTEM GROUP Y ALLERTON ET AL

U IcLIFIED 29MY8 ESD-Tit-0-229 FIN20-06-C-SM? F/9 I IL

Emmhhhmhhh

Ehhmmhmmhhhu
EmhhmhAN

11111L 1.1L28 32

L
L. M~ 11120

_
t-

1.25~ " 211L 12
III~ 111 W

Mv2

-1.2
5.1.6

* s'.C a.,

110,.
-V!;Z p

SECTION 12

FILE MANAGEMENE USER INTERFACE (FUI)

The FUI is used to create or edit a file that is to be read from by a READ
Primitive during a simulation run. The FUI has commands to enable the user to
add and delete lines from the file by specifying line numbers upon which the

-ccmrands are to operate. The FUI can operate in an error checking or
• .. non-error checking mode. In error checking mode the user specifies a project

data base that will be accessed during the FUI session. The user will be able
to list the names of entities in the data base, and whenever the user places
the name of an entity into the file, the existence of the entity will be
verified in the data base. In non-error checking mode, the only verification
that takes place is that numeric values do not contain any characters, and
alpha literals start with a dollar sign.

Each value placed in a file is added on a separate line. Files not created
under the FUI can be edited under the FUI as long as each value is on a
separate line. However, the simulation does not require that values be on
separate lines. The following types of data can be placed in a READ file:

Process name
Resource name
Item name
Queue name
Table name
Action name
Alpha literal
Numeric

The FUI ccmuands to manage the READ file are illustrated in figure 12-1 and
described on the pages that follow it.

12-1-..

%J

IF.

TII

R~~UAD LINES

F! I.E

Figure 12-1. File Management User Interface Commands

12-2

- S -)- .S 1.V -Y V1. X-.w Y

12.1 FUI COMMAND SUMMARY

Figure 12-2 contains a sunmary of the FUI level cczrnands.

DELETE iline-numterl , [line-nuniber2]
DEL

END

HELP [subtopic],..., (subtopic]
HELP (@topic , (topic-nanm] ,(subtopicl ,..., (subtopic]

LIST [line-nuniberi] ,[line-nurnber2]
LIST (entity-type]
L

LISTOFF

LISTION

PLACE Itypei,[name],[line-nunberl
P

RENUM

Figure 12-2. FUI Camnankd Summary

12-3

FUI/ DELETE

12.1.1 FUI CMMAND: DELETE

The DELETE ccmmand is used to remove lines fran the file. .5.

COMMAND SYNTAX: 5.- La.

DELETE [line-numberl , (line-number2]

DEL

where:

Iline-numberl] is a required parameter indicating the first line to be deleted.

(line-number2l is an option parameter indicating the last line for a range of
lines to be deleted. 5

FUNCTION RESULT:

If the user is in LISTON mode (see section 12.1.6) the deleted lines are
listed. In either mode, a message indicating the number of lines that were
deleted is displayed.

12-4,

I.

"',S

'..

1

.
12-4 I

'I.

FUI/ END

12.1.2 FUI COMMAND: END

The END ccomand is used to terminate an FUI session.

COMMAND SYNTAX:

END

* 2 FUNTION RESULT:

If the user has made any changes to the data file, AISIM queries the user as
to whether the changes should be saved. If the user responds "yes", the
temporary file is copied into the permanent data file. if the user responds
"no", the permanent data file remains unchanged. The user is then returned to
the AISIM READY level.

.4

-12-5

N'.0

|.eI P W

FUI/ HELP
4M

12.1.3 FUI COMAND: HELP

The HELP camuand provides the user with access to help information about the
current FUI interface and about other aspects of the AISIM system.

COMMAND SYNTAX:

HELP (subtopic] ,..., [subtopic]

HELP [@topicl, [topic-name], [subtopic) ,..., tsubtopic]

where:

[subtopic] is an optional parameter indicating the name of a subtopic about
which the user would like information. Successive subtopics contain more
detailed information.

[@topic] is an optional parameter indicating that the top level topic should
not be the current function but should be as specified. Available HELP topics
are:

topic Acceptable Abbreviation

FUNCTION LEVEL F "'
CONCEPT C
GUIDELINE G
PROCEDURE P
NOTE N

(topic-name] is an optional parameter indicating the name for the new top
level topic.

FUNCTION RESULT:
.5
'.

If no path is specified, help information on the FUI function is displayed.
The commands acceptable at the current FUI level of operation are listed as
subtopics indicating that further help is available on them. HELP with no
path specified displays the FUI help message text and available subtopics,
followed by the prompt:

Subtopic?

If you type in a subtopic name, a HELP message on the subtopic will be
displayed. If one or more subtopics exist at this level, HELP will prompt you
for another subtopic allowing you to see additional help information.
Pressing a <cr> will terminate your descent for additional help.

If you know precisely what information you need, you can access it directly by
including a path parameter which specifies the subtopics to move down through
to locate the help message. Each subtopic listed in the path must be
separated frcm the previous by a ccmma.

12-6

-v

After you have located the help information you wanted and prior to
terminating your initial request for help, the system will prompt you for
another topic. The help topic initially is the AISIM function you invoked
help fran. You can continue to view information on this topic-name by simply
entering another subtopic path. Information on other AISIM functions, AISIM
modeling concepts, and user-supplied instruction can be obtained by changing
the help topic. You can change the help topic by typing the special character
"@" followed by the new top level HELP topic and the topic-name. Once again
you can specify a subtopic path to the information you want. If you are not
aware of the topic-names under a specific topic, entering the topic parameter
will display a message listing the possible topic names.

1I

.-.'

•I;

.4-

'p%

12-7 , .S

. -

..

FUI / LIST A.

12.1.4 FUI COMMAND: LIST

The LIST ccmmand is used to display lines in the file or the names of entities

in an associated error checking data base.

COMMAND SYNTAX:

LIST [line-numberl] [line-number2]

LIST [entity-type]

L
I

where:

[line-numberl] is an optional parameter indicating the first, or only, line to 4'

be listed.

[line-number2] is an optional parameter indicating the last number in a range
of numbers to be listed.

'4'

[entity-type] is an optional parameter indicating the type of entities whose
names are to be listed.

FUNCTION RESULT:

If line numbers are specified, then lines from the file are listed. If
"entity- type" is specified and there is an error checking data base, then the "
names of entities of the specified type are listed.

12-8

4'

• _

FUI / LISTOFF .

12.1.5 FUI COMMAND: LISTOFF

The LISTOFF camand is used to turn off verification for the FUI ccmiands.

CCMMAND SYAX: A.
LISTOFF

FUNCTION RESULT:

In LISTOFF mode, the results of PLACE and DELETE camiands are not reflected in
the screen display.

I

%,

ft..A

2,-.

ft

I

12 -9 '-t.

%-%'

".P - - -- W 77 - w-.K I- IT5 -

FUI / LISTON

12.1.6 FUI C(OMAND: LISTON

The LIMSON camand is used to turn on verification for the FUI commands.

COMMAND SYNTAX:

LISTON

FUNCTION RESULT:
9'.

When LISTON is set, the results of PLACE and DELETE cmm-ands are verified on "
the screen.

1

:2"-

!

.

U%0.

9.,

.9.
12-1 ,-.

0'%1

.9

-D

FUI / PLACE

12.1.7 FUI CO?4MAND: PLACE

The PLACE command is used to add data to the file.

COMMAND SYNTAX:

PLACE Jtype1,[name] ,jline-number-

P

where:

Jtypej is a required parameter indicating the type of data being added to the

file. The valid types and their abbreviations are as follows:

Process P
Resource R
Item I
Process[] P '
Resource[] R[]
Item(] il[
Queue Q
Table T

Action A
Alpha AL
Numeric N

N".

(name] is an optional parameter indicating the name of an entity whose
attributes are to be placed in the file.

[line-number] is a required parameter indicating the line number at which the
data is to be added to the file.

FUNCTION RESULT:

A form is displayed for the user to enter the data that is to be placed in the
file. If "type" is an entity, a form prompting for the name of the entity is
displayed. If error checking is in effect, the existence of the entity is
verified in the data base. If "type" is alpha or numeric, a form prompting
for the data is displayed, and verification is made as to whether the data is
an alpha literal or numeric. If type is "entity[]", a form prompting for the
attributes of the entity is displayed. If error checking is not in effect,
the form will contain spaces for up to fifteen attributes. If error checking
is in effect, the names of attributes of the named entity are displayed next
to the form fields so the user will know what attributes are required.

When the form is entered, the data is added to the file.

1'2-1

%Vi*-\ N IN-V V lj 7 7-

FUJI / RENUM

12.1.8 FUI C(MMAND: RENUM

The RENUM coimiand is used to renumber the data file.

COMMAND SYNTAX:

RENUM

FUNCTION RESULT:

The lines in the data file are renumbered by whole numbers. When the user
inserts data between two lines that are sequential (such as 3 and 4), theincrement is tenths (i.e. 3.1, 3.2...). If necessary the user can use

hundreths to place data between two lines such as 3.2 and 3.3. The RENUM
command will go through the file and renumber all the lines by whole numbers.

U
.1

Nor . -

12-12

,'-.i. 'w 'z_..-,-.--._' '..",,..-,i- . ' - .'.'.m .' .'," _% , ." ".',' .J,-"-.,,,,%" .-- .".. z " ,-.-.-%. ,- ,- , . .. ,,% _,. ... I

SECTION 13

AISIM SIMULATION REPORTS

When a simulation is run, a number of Processes are initiated at various
times throughout the simulation period. As their execution proceeds they
contend for available Resources such as machines and operators. The
simulation stops at the end of a predefined period and produces output
statistics.

In general, any high-level performance factor measurable on a real system
in terms of time, percentages, or counts of events can be measured during
the model run. Experiments that are virtually impossible to run on a real
system can be constructed and easily measured in the model. Specifically,
measures that may be obtained are:

- Resource utilization statistics
- Total number of Processes ccnpleted
- Average elapsed time for Process completion
- System and job delays associated with actions
- Statistics on queue sizes and timing
- Variable changes during simulation
- System and job delays associated with Resources
- Execution count of Process steps

Two forms of statistical output are available to the user as a result of
the simulation. Interactive output, displayed on the terminal screen, is

'I available at any user-defined breakpoint, at the end of simulation
periods, or at the end of the simulation.

The second form of output is a listing, obtained off-line, which lists the
simulation measures mentioned above.

The following sections describe the simulation outputs and how to obtain
them.

13.1 INTERACTIVE RESULTS AND HOW TO OBTAIN THEM

Interactive results can be viewed on the terminal while in the AUI level.
A review of the AUI level shows that several conmmands are available for
viewing data after simulation periods, after breakpoints, and after
simulation termination. The DEFPLOT comnand is used before simulation is
started to select the graphs that the user wishes to view after simulation
(see the DEFPLOT command description in section 7.2 for attributes and
statistics of entities that can be graphed). The LISTVAL comand can be
used at the points mentioned above to view simulation data concerning
model entities (see the LISTVAL command description in section 7.11 for
attributes and statistics of entities that can be viewed). The PLOT

13-1 o

? '-'k

I'f

~4k
%,,

cc'iand is also used at the points mentioned above to view graphically the
statistics which were kept due to the DEFPLDT plot definitions. See the
PLOT command definition in section 7.12 for examples of the forms and
graphs that are displayed to the user as a result of this command.

13.2 REPORT RESULTS AND HOW TO OBTAIN THEM

The commands to view and print results are available at the AISIM READY
level. As the simulation executes, simulation results are automatically
stored in a database file named:

project.RPT

where:

project indicates that the model output report to be accessed was
generated by an analyze session on the design database named PROJECT.

Two AISIM READY level ccmnands are available to manipulate this data file.
The PRINT command (see section 5.20) is used to print a listing of the
simulation report at the local hardcopy facility. The EDIT command (see
section 5.7) allows the user to view the project.RPT file through the use of
the CDT text editor. See section 13.3 for a brief discussion of relevant EDT
text editor ccmnands. See the EDT Users Manual for additional information on
the EDT text editor.

The project.RPT file contains a number of reports that describe the model 5

that was simulated and the results of the simulation. On the following
pages each of these reports is described and examples of results are %
given.

INITIALIZATION REPORr: This report displays the time at which the model was
run, any descriptive text entered by the user, and the contents of the model
inputs as used during this simulation. Elements of this report are:

1) Global Constant Definition
2) File Definition
3) Table Definition
4) Global Variable Definition
5) Item Definition
6) Queue Definition
7) Resource Definition
8) Architecture Legal Path Definition
9) Action Definition "

10) Process Definition
11) Load Definition
12) Scenario Definition

Figures 13-1 through 13-5 show the various parts of a typical initialization
report.

.13-2

Ao. S*

Ir~ 7- ... 'w - ..-. - X, w

5 1 VMJL A T I N R CPO0R T
$ AISIM VERSION 5.0 S
S HUGHES AIRCRAFT COMPANY S
$ 05/15/87 S
$S$$S SSSSSS$SSlS SSSSSSSS$ SSSSSS SSSS$$S$$SSSSSSS$S

04/30/1987 10:29:55

TESTDOB

TEST KEYWORDS, PARAMETER PASSING ANl READ/WRITE

4S

GLOBAL CONSTANT DEFINITION

CONSTANT INITIAL
MNEMONIC VALUE COMMENT

FILE DEFINITION

FILE
MNEMONIC COMMENT

FILEt FILE TO READ FROM
FILE2 FILE TO WRITE TO

TABLE DEFINITION

GLOBAL VARIABLE DEFINITION

VARIABLE INITIAL
MNEMONIC VALUE COMMENT

V CHNL 0 GLOBAL VARIABLE TO HOLD CHANNEL
V-CLOCKI o GLOBAL VARIABLE OF CLOCK FIRST SAMPLE
V-CLOCK2 0 GLOBAL VARIABLE OF CLOCK SECOND SAMPLE
V-CNODE A GLOBAL VARIABLE OF CURRENT NODE INITIALIZED TO RES
V-NXTND B GLOBAL VARIABLE INITIALIZED TO RESOURCE

Figure 13-1. Initialization Report - Constants, Piles, Tables, and

Global Variables

13-3%

4%

ITEM DEFINITION

ITEM DESCRIPTION

ACK ACKNOWLEDGEE',E GENERATED AT COMM CENTERS BOUND FOR S
ATTR. INITIAL
NAME VALUE

HOPS I S

LENGTH ACKLENT
P.MESS 0

ORIGIN 0'
RETRAN I L
TNODE 0
TYr- SGOOD

ITEM DESCRIPTION

YSG04 MESSAGES GENERATED AT S-NODES BOUND FOR COMM CENTERS

ATTR. INITIAL
NAME VALUE

ACKREC 0
DEST1 1
DEST2 1
DEST3 1
DEST4 1
ENDTM 99999999
ERRPROB ERRPRB04
HOPS HOPS04
LENGTH LENGTH04
NXTACKNM 1
ORIGIN S04
RETRAN 1
SATOELAY DELAY04
SNUM S04NUM
STARTTM $CLOCK

QUEUE DEFINITION

QUEUE MAXIMUM
MNEMONIC SIZE COMMENT

BUFFER INFINITE BUFFER FOR MESSAGES AWAITING PROCESSING

Figure 13-2. Initialization Report - Items and Queues

al0

13-4

.. %. .J% . .y *. *

,

RESOURCE DEFINITION

RESOURCE TOTAL INITIAL
MNEMONIC # UNITS # UNITS DESCRIPTION

B1 1 1 RESOURCE FOR CPU NODE
ATTR. INITIAL
NAME VALUE

O CS 0
M-CS 2
M-ROUTE 0
RITE SECSCHR

B1B2 1 1 RESOURCE FOR CHANNEL CONNECTOR
ATTR. INITIAL
NAME VALUE

RATE 56

B2 1 1 RESOURCE FOR CPU NODE
ATTR. INITIAL
NAME VALUE

D CS 0
M-CS 2
M-ROUTE 0
RITE SECS CHR

ARCHITECTURE LEGAL PATH DEFINITION

FROM TO NEXT VIA
DEVICE DEVICE DEVICE LINK

81 82 B2 BIB2 %
B1 B3 82 B182
81 B4 B2 8182
B1 B5 B2 BIB2
81 86 82 B182
81 Hi HI HSI 8 U...

81 H2 82 8182
81 H3 82 8182
B1 H4 B2 B1B2
B1 HS B2 BIB2
81 H6 B2 8182
B2 81 83 B283
B2 B3 B3 B283
82 84 83 B2B3
82 B5 83 82B3
82 B6 83 B283 -

B2 HI B3 B283
B2 H2 H2 HB2 B
82 H3 83 8287
82 H4 B3 82B3
B2 HS B3 8283
B2 H6 83 8283

Figure 13-3. Initialization Report - Resources and Architecture
Legal Path Table

13-5 %N

ML me-p

ACTION DEFINITION

ACTION
MNEMONIC COMMENT

READ MSG DELAY AT RECEIVE TO PROCESS MESSAGE
SENDTNG DELAY AT TRANSMIT TO DELIVER MESSAGE TO BUFFER

PROCESS DEFINITION

PROCESS
MNEMONIC DESCRIPTION

RECEIVE RECEIVE MESSAGES FROM TRANSMIT

ENTRY OPCODE PARM PARM PARM COMMENT

START STATION2 NO
TEST SEMA ABORT TEST FOR BUFFER USE
REMOVE FIRST USG BUFFER REMOVE BY FIFO DISCIPLINE

COMPARE USG EQ WHEN MSG=O BUFFER IS EMPTY
0 ABORT

ASSIGN MSG LENGTH MESSAGE LENGTH IS READ
ALPHA

EVAL MU CALCULATE RECEPTION TIME
ALPHA*GAMMA2

READMSG CONSTANT MU TIME TO PROCESS MESSAGE
SECONDS RESUME

DESTROY MSG MSG ELIMINATED FROM SYSTEM
ABORT ENTRY ENTER FROM COMPARE & TEST

END

LOCAL VARIABLES OF PROCESS RECEIVE

I SEMA (R) 2 USG (I) 3 BUFFER (Q) 4 ALPHA
5 MU 6 READMSG (A)

GLOBAL VARIABLES OF PROCESS RECEIVE

I GAMMA2
PROCESS
MNEMONIC DESCRIPTION

TRANSMIT TRANSMITTING MESSAGES TO RECEIVER

ENTRY OPCODE PARM PARM PARM COMMENT

START STATION1 NO
ALLOC SEMA I ALL RESOURCE FOR SENDING MSG

SPRIORTY
CREATE MSG INTRODUCE MSG INTO SYSTEM
EVAL ALPHA GENERATE RANDOM NUMBER

RANDOM
EVAL ALPHA AVERAGE TIME ALPHA

ALPHA.GAMMA1
ASSIGN ALPHA SET MESSAGE LENGTH

MSG LENGTH

EVAL MU CALCULATE TRANSMIT TIME
ALPHA*GAMMA2

SENDING CONSTANT MU TIME CONSUMED TRANSMITTING

SECONDS RESUME
FILE MSG LAST BUFFER STORE MSG ON BUFFER
DEALLOC SEMA 1 RELEASE RESOURCE SEMA
END

LOCAL VARIABLES OF PROCESS TRANSMIT

1 BUF1 (R) 2 MSG (I) 3 ALPHA 4 MU
5 SENDING (A) 6 BUFFER (Q)

GLOBAL VARIABLES OF PROCESS TRANSMIT

1 GAMMA1 2 GAMMA2

Figure 13-4. Initialization Report - Actions and Processes

13-6

t -.. -

LOAD
MNEMONIC DESCRIPTION

LOADH6 THIS IS THE LOAD FOR HOST 8
LOAD NODES

H6

PROCESS SCHEDULE
MNEMONIC MAX # METHOD MEAN DELTA UNITS PRIORITY

TOHOSTi 20 EXPONENT 1370 0 MSECONDS 0
TOHOST2 20 EXPONENT 1370 0 MSECONDS 0
TOHOST3 20 EXPONENT 1370 0 MSECONDS 0
TOHOST4 20 EXPONENT 1370 0 MSECONDS 0
TOHOSTS 20 EXPONENT 1370 0 MSECONDS 0

SCENARIO DEFINITION

SCENARIO
MNEMONIC DESCRIPTION

PSCEN

PERIOD PERIOD OUTPUT
LENGTH UNITS UNITS

15000 MSECONDS SECONDS

PERIOD PERIOD PERIOD PERIOD PERIOD PERIOD PERIOD
MNEMONIC MNEMONIC MNEMONIC NEMONIC MNEMONIC MNEMONIC MNEMONIC

===== ======== ======== ======== ==t====== ======== =====

PERI

TRIGGER TIME TO SCHEDULE SCHEDULE TRIGGER TIME TO SCHEDULE SCHEDULE
MNEMONIC SCHEDULE UNITS PRIORITY MNEMONIC SCHEDULE UNITS PRIORITY

%LOADHI 0 YSECONDS 0 LOADH2 0 MSECONDS 0

LOADH3 0 MSECONDS 0 LOADH4 0 MSECONDS 0
LOADH5 0 MSECONDS 0 LOADH6 0 MSECONDS 0

0 ERRORS WERE DETECTED DURING MODEL INITIALIZATION

Figure 13-5. Initialization Report - Loads and Scenario

13-7

.......... ". .,"
'' - ."

13-2.1 Constant Report

This report shows the value of the constants at simulation termination.
An example of this report is shown in figure 13-6 where the labeled columns
have the following significance.

CONSTANT: The name of the Constant

CURRET VAUE: The Constant's value (in real numbers) at the end of
the simulation.

SIMULATION TIME = 3241.00000 SECONDS

CONSTANT S.PORT

CURRENT
CONSTANT VALUE...

BER .00001
CCCHRATE 2.4
CHRATE01 1.2
CHRATE02 2.4
CHRATE03 2.4
CHRATE04 .6 ol
CHRATE05 .07S ,r
CHRATE08 .076 Il
CHRATE07 1.2
CHRATE08 .3
CHRATE09 2.4
CHRATEI0 .3
CHRATE11 1.2
CHRATE12 .3
CLOCKVAL 0
DELAYOI 0
DELAY02 0
DELAY03 0
DELAY04 0
DELAY05 0
DELAY06 0

"p"

Figure 13-6. Constant Report

op"

IN

13-8

"p%

13.2.2 Variable Report

Variable reports are divided into the numeric and the non-numeric
variables. A sample of the report for numerical variables is shown in
figure 13-7, where the columns have the following significance.

VARIABLE: The name of the Variable.

TOTAL SAMPLES: The number of times the Variable has been set to a
value over the simulation period, including its
initialization at the start of the simulation.

CURRENT: The value of the Variable at the end of the
simulation.

MEAN: The mean of all values (including its initial value)
that the Variable was set to over the simulation
(i.e., the sum of the values divided by TOTAL
SAMPLES).

STD DEV: The standard deviation of the values that the
Variable was set to over the simulation.

MINIMUM: The minimum value that the Variable took on during
the simulation.

MAXIMUM: The maximum value that the Variable took on during
the simulation.

SIMULATION TIME 10000.00000 SECONDS

VARIABLE REPORT

NUMERIC VARIABLES...

TOTAL ---------------------------------VALUE
VARIABLE SAYPLES. CURRENT... MEAN STD DEV ... MINIMUM... MAXIMUM...

VABS 2 10.000 10.000 0. 10.000 10.000
VADD 2 10.000 10.000 0. 10.000 10.000

VARCOS 89 2.000 2.000 0. 2.000 2.000
VARCSIN 89 1.142 1.142 .4.012E-08 1.142 1.142
VARCTAN 89 -1.142 -1. 142 *2. 764E-07 -1. 142 -1,142
VBETA 89 0.828 0.777 0.990 0.427 10.000
VBIN 89 100.000 98.882 10.488 0.500 100.000
VCOMPI 2 12.000 6.000 6.000 0. 12.000
VCOMP2 2 53.150 26.575 26.575 0. 53.150
VCOMP3 2 9.000 4.500 4.500 0. 9.000
VCOMP4 2 7.135 3.567 3.567 0. 7.13,

VCOS 89 -0.416 -0.416 +1.634E-08 -0.416 -0.416

VCTABLE 8 85.000 50.000 32.977 0. 100.000
VDIV 2 10.000 10.000 0. 10.000 10.000
VDTABLE 8 80.000 47.500 33.072 0. 100.000

% VERLANG 89 9.710 11.173 10.250 3.937 100.000
VEXP 89 3.343 8.847 8.990 0.058 53.791

VEXP10 89 100.000 100.000 0. 100.000 100.000
VEXPE 89 100.000 100.000 .1.368E-05 100.000 100.000

Figure 13-7. Numeric Variable Report

13-9
-iw

-: ,.-.,. ,.'.'v..'-. *." .. ',"v * - - - .- .- ...

The report for Variables taking non-numeric values is illustrated in
figure 13-8 where the labeled columns have the following significance.

VARIABLE: The name of the Variable.

CURRENT TYPE: The type of entity or construct that the Variable is
set to at the end of the simulation.

CURRENT VAlUE: The name of the entity or construct to which the
Variable is set at the end of the simulation.

NON-NUMERIC VARIABLES...

CURRENT CURRENT
VARIABLE TYPE VALUE

ACKST011 ALPHA SCORRECT
STATE013 ALPHA SCORRECT
STATE014 ALPHA SCORRECT
STATE021 ALPHA SCORRECT
STATE022 ALPHA SERROR
STATE023 ALPHA SCORRECT
STATE024 ALPHA $CORRECT
STATE031 ALPHA SERROR
STATE032 ALPHA SCORREC'
STATE033 ALPHA $CORRECT
STATE034 ALPHA $CORRECT
STATE041 ALPHA $CORRECT
STATE042 ALPHA SCORRECT
STATE043 ALPHA $CORRECT
STATE044 ALPHA SCORRECT
STATE051 ALPHA SERROR
STATE052 ALPHA SERROR
STATE053 ALPHA SERROR
STATE054 ALPHA SERROR
STATE061 ALPHA SERROR
STATE062 ALPHA SERROR
STATE063 ALPHA SERROR
STATE064 ALPHA SERROR

STATE071 ALPHA SCORRECT
STATE072 ALPHA $CORRECT
STATE073 ALPHA $CORRECT
STATE074 ALPHA $CORRECT
VAR RESOURCE CPU

L'-4

Figure 13-8. Non-nurreric Variable Report

1 .

13-10

I

13.2.3 Item Report

Figure 13-9 illustrates the Item Report, where the labeled columns have the
following significance.

ITEM NAME: The name of the Item.

NUMBER CREATED: The number of instances of this Item that have been
created with the CREATE or SEND Primitives over the
simulation.

NUMBER DESTR'D: The number of instances of this Item that have been
destroyed with the DESTROY Primitive over the
simulation.

TIME IN SYSTEM - MINIMUM: The minimum time any instance of the Item
was in the system.

TIME IN SYSTEM - MAXIMUM: The maximum time any instance of the Item kp
was in the system.

TIME IN SYSTEM - AVERAGE: The average time any instance of the Item
was in the system.

TIME IN SYSTEM - STD DEV: The standard deviation in the times the
Item spent in the system.

MINIMUM, MAXIMUM, AVERAGE, STD DEV are based on the individual Item
instances' time in the system. This statistic is calculated whenever an
Item instance is destroyed (with the DESTROY Primitive) and is equal to
the time of destruction minus the time of creation (with the CREATE or
SEND Primitive). Therefore, Items in the system that have not been i%.,

destroyed ,at simulation end will not be reflected in these statistics.

SIMULATION TIME = 100.00000 SECONDS

ITEM REPORT

ITEM NUMBER NUMBER TIME IN SYSTEM
NAME CREATED DESTR'D MINIMUM... MAXIMUM... AVERAGE... STD DEV...

AITEMi 10 9 10.00 90.00 50.00 26.82
AITEM2 10 9 10.00 90.00 50.00 25.82
AITEM3 10 9 10.00 90.00 50.00 25.82
AITEM4 9 9 0. 0. 0. 0.
ITEMI 10 10 5.00 6.00 5.00 0.
ITEM2 10 10 4.00 4.00 4.00 0.
ITEM3 10 10 3.00 3.00 3.00 0.
ITEM4 10 10 2.00 2.00 2.00 0.
ITEMS 10 10 1.00 1.00 1.00 0.
ITEMB 10 10 0. 0. 0. 0.

Figure 13-9. Item Report

13-11

.5,.,,.
,..,-'v. .' ,..-. ,* ,,,F " " " " "'" ""," " .- ,' '-, -""'.,.S""J-. " ,,* '- -",'-' -

•
%..' "~b"-", . ." " "

13.2.4 Resource Report

This report gives statistics on each Resource's presence in the idle state,
busy queue, hold queue, and inactive state as well as the number of Processes
put into a wait queue for the Resource. These queues are discussed in detail
in the section on system defined queues (see section 3.5). Four kinds of
statistics are kept on the busy and wait queues: (1) entities put into the
queue (INTO), (2) entities taken out of a queue (OUT OF), (3) the number in
the queue (W, and (4) the time entities spent in the queue (TIME).
Statistics on the number in the state are kept for the idle and inactive
states. Total samples and time in queue statistics are tabulated for the hold
queue.

An example of the Resource Report on these states and queues is shown in

figure 13-10. For each row of each queue or state the numbers have the
following significance.

The TOTAL NUMBER of the INTO and OUT OF rows indicate the number of
entities that were, respectively, placed in or taken out of the queue.

The TOTAL NUMBER for HOLD TIME statistics indicates the number of samples in
the time-in-hold-queue statistics.

The CURRENT # is the number of entities in the queue or state at the time
the simulation run was completed.

The MEAN # is the time weighted average of the number of entities in the
queue or state over the simulation.

The STD DEV # is the standard deviation in the number of entities in the
queue or state over the simulation.

The MINIMUM # is the minimum number of entities in the queue or state at
one time over the simulation.

The MAXIMUM # is the maximum number of entities in the queue or state at
one time over the simulation.

The MEAN TIME is the average time entities spent on the queue.

The STD DEV TIME is the standard deviation in the time that the entities
spent on queue.

The MINIMUM TIME is the minimum time any entity was in the queue.

The MAXIMUM TIME is the maximum time any entity was in the queue.

The REQUEST TIME statistics provide the mean, standard deviation, minimum
and maximum of the time it took for the request for each unit of the
Resource to be satisfied. I.e., the request time is the difference

D between the time an allocate request is made and the time the Resource
unit is placed in the busy queue.

13-12

The HOLD rIME statistic provides the mean, standard deviation, minimum and
maximum time that Resource units were allocated but waiting for the request,

of which they were a part, to be completely filled. This statistic is
gathered for units placed into hold as a group - not as individual units.

The field labeled "CURRENTLY ALLOCATED TO PROCESSES:" provides a list of he
Processes whose task instances had allocated the Resource at simulation end.* 4-

The field labeled "PIROCESSES CURRENTLY WdTING:" provides a list of the
*. Process task instances which were suspended while waiting for the Resource at

the end of the simulation.

SIMULATION TIME 100.00000 SECONDS

RESOURCE REPORT

TOTAL
RESOURCE NUMBER CURRENT... MEAN STD DEV... MINIMUM... MAXIMUM...

CPUI
IDLE 0. 2.700 2.769 0. 8.000

REQUEST TIME 0.645 1.291 0. 5.000
HOLD TIME 30 3.000 1.414 1.000 6.000

INTO BUSY 110
OUT OF BUSY 102

BUSY 8.000 4.400 2.168 0. 8.000
BUSY TIME 4.020 2.429 1.000 10.000

INACTIVE 0. 0. 0. 0. 0.

INTO WAIT 22
OUT OF WAIT 22

WAITING 0. 0.300 0.468 0. 1.000
WAIT TIME 1.364 1.823 0. 6.000

CURRENTLY ALLOCATED
TO PROCESSES: PLONGI PSHRT1 PSHRTI PSHRTI PSHRT1

PSHRTI

PROCESSES CURRENTLY

WAITING: NONE

Figure 13-10. Resource Report

13-13

4.

13.2.5 Action Report

The Action Report provides the user with statistics on the time consumed
by each Action. Statistics are gathered on three aspects of such time
consumption, called "useful time", "delay time", and "wasted time".

"Useful time" is equal to the amount of time the Action spent performing the
action. "Delay time" is the time between the initiation and completion of an
Action during which the execution of the Action (i.e., the Process in which it
appears) is suspended. "Wasted time" is applicable to an Action which has an
option of "RESTAR". If the Action is interrupted and is restarted fron the
beginning, the time spent performing the Action before it was suspended is
"wasted" since it must be redone. Useful time, delay time, and wasted time
are calculated only upon the completion of the Action. Therefore, Actions
which are active at the end of the simulation are not included in these
statistics.

A sample Action Report is shown in figure 13-11. The name irmediately below
the ACTION heading is the user-defined name of the Action. For the row
labeled USEFUL TIME the statistics have the following significance:

TOTAL SAMPLES: the number of times the useful time, delay time, or
wasted time was calculated (i.e., the number of times the Action was
conpleted).

MEAN: The average useful time, delay time, or wasted time of this Action
over the simrulation (i.e., the total time divided by TOTAL SAMPLES).

STD DEV: The standard deviation in the useful time, delay time, or
wasted time.

MINIMUM: The minimum useful, delay, and wasted time taken in the
execution of the Action over the simulation.

MAXIMUM: The maximum useful, delay, and wasted time taken in the
execution of the Action over the simulation.

% TIME OF T17OTAL: The percent of the total simulation time for which
this Action was executing. Since AISIM allows for the parallel
execution of the same Action, this figure can be greater than 100.

Note that % OF TOTAL is not calculated for the delay time or wasted time.

13-14

L 1111.% ?,

SIMULATION TIME = 100.00000 SECONDS

ACTION
REPORT

TOTAL % TIME
ACTION SAMPLES MEAN STD DEV... MINIMUM.. MAXIMUM... OF TOTAL,

DELAY
USEFUL TIME 488 2.135 3.260 1.000 28.000 996.000
DELAY TIME 468 0.039 0.357 0. 4.000

WASTED T:ME 0 0. 0. 0. 0.

TOTAL % TIME
ACTION SAMPLES MEAN STD DEV... MINIMUM.. MAXIMUM... OF TOTAL.

LNGDELAY
USEFUL TIME 2 4.000 0. 4.000 4.000 8.000
DELAY TIME 2 4.000 0. 4.000 4.000

WASTED TIME 2 5.000 1.000 4.000 6.000

TOTAL % TIME
ACTION SAMPLES MEAN STD DEV... MINIMUM.. MAXIMUM... OF TOTAL.

MEDDELAY
USEFUL TIME 3 4.000 0. 4.000 4.000 12.000
DELAY TIME 3 3.667 0.471 3.000 4.000

WASTED TIME 3 5.000 1.414 3.000 6.000

TOTAL TIME
ACTION SAMPLES MEAN STD DEV... MINIMUM.. MAXIMUM... OF TOTAL.

SRTDELAY
USEFUL TIME 2 4.000 0. 4.000 4.000 8.000
DELAY TIME 2 4.000 0. 4,000 4.000

WASTED TIME 2 5.500 0.500 5.000 6.000

Figure 13-11. Action Report

A,.1

13-15

'A-

13.2.6 Queue Report

The Queue Report provides statistics on the utilization of user defined
Queues. The report contains information both on the number of entities
stored on the Queue as well as information on the impact the utilization
of the Queue had on Process execution and suspension. A sample Queue
Report is shown in figure 13-12. The rows labeled FILED ON, REMOVED FROM, #
IN QUEUE and TIME IN QUEUE key statistics on the manipulation of the Queue
itself. The rows labeled TASKS BLOCKED, TASKS RESUMED, # BEING BLOCKED, TIME
BLOCKED refer to statistics on Process tasks that have been suspended because
they attempted to file an entity on a Queue that was fuli (i.e., whose maximum
number had been exceeded.)

The statistics in each category have the following siriificance.

The TOTAL NUMBER/FILED ON is the number of entities that have been
filed on the Queue over the whole simulation.

The TOTAL NUKBER/REM)VED FROM is the ntunber of entities that have
been removed from the Queue over the simulation.

The CURRENT/# IN QUEUE is the number of entities on the Queue at the
time of simulation end.

The MEAN/# IN QUEUE is the time weighted average of the number of

entities on the Queue over the sinulation.

The STD DEV/# IN QUEUE is the standard deviation in the number of
entities on the Queue over the simulation.

The MINIMUM/# IN QUEUE is the minimum number of entities on the Queue
at any time during the simulation (this statistic is always zero
since the Queue will be empty at the start of the simulation).

0'

The MAXIMUM/# IN QUEUE is the maximum number of entities residing on N.
the Queue at any time during the simulation. .4

The MEAN/TIME IN QUEUE is the average time entities spent on the
Queue.

The STD DEV/TIME IN QUEUE is the standard deviation of the in times
entities spent on the Queue.

The MINIMUM/TIME IN QUEUE is the least amount of time any entity
spent)n the Queue.

The MAXIMUM/TIME IN QUEUE is the greatest amount of time any entity
spent on the Queue.

The statistics on the blocking of tasks due to the filling of Queues have
the following significance.

The TOTAL NUMBER/TASKS BLOCK is the number of Process tasks that were

, ..suspended over the simulation due to Queue blockiN. -

+ ~13-16 '

The TOTAL NUMBER/TASKS RESUMED is the number of Process tasks resumed
after having been blocked due to the filling of a Queue.

The CURRENT/# BEING BLOCKED is the number of Process tasks blocked at
the time of simulation end.

The MEAN/# BEING BLOCKED is the average of the number of Process
tasks being blocked over the simulation.

The STD DEV/# BEING BLOCKED is the standard deviation in the number
of tasks being blocked over the simulation.

The MINIMUM/# BEING BLOCKED is the fewest number of Process tasks
blocked at any time during the simulation.

The MAXIMUM/# BEING BLOCKED is the greatest number of Process tasks
blocked at any time during the simulation.

The MEAN/TIME BLOCKED is the average of the times Process tasks were
blocked during the simulation.

The STD DEV/TIME BLOCKED is the standard deviation in the times
Process tasks were blocked during the simulation.

The MINIMUM/TIME BLOCKED is the least amount of time a Process task
was blocked during the simulation.

The MAXIMUM/TIME BLOCKED is the greatest amount of time a Process
task was blocked during the simulation.

SIMULATION TIME 1400.00000 SECONDS

QUEUE REPORT

TOTAL
QUEUE NUMBER CURRENT... MEAN STD DEV... MINIMUM... MAXIMUM ...

BUFFER
FILED ON 400

REMOVED FROM 400
IN QUEUE 0. 1.343 4.389 0. 24.000

TIME IN QUEUE 4.699 7.185 -3,357E-04 26.097

TASKS BLOCKED 0
TkSKS RESUMED 0

BEING BLOCKED 0. 0. 0. 0. 0.
TIME BLOCKED 0. 0. 0. 0.

Figure 13-12. Queue Report

13-17

-.. + .. :m.* ~ ~4~~ %r~%%~% V ., ~ W 1 V. W

13.2.7 Process Report

This report gives information on all aspects of Process- executions. As
mentioned before, Processes contend for Resources and many times must wait
for another Process to complete before the current Process completes.
Times spent in these states as well as other important data are recorded
automatically for the user.

The Process Report provides the following statistics:

1) TOTAL SAMPLES - the number of times the Process was initiated,
the total (overall Process instances) number of times the Process
waited for another Process to complete and for required Resources
to become available.

2) The sum total of time spent in all executions of this Process,
sum total of waits on Processes and also Resources.

3) The mean time required for execution of the Process, for waiting
on Processes, for waiting on Resources.

4) The standard deviation of time the Process required for
execution, for waiting on Processes, for waiting on Resources.

5) The minimum time required for Process execution, minimum time
spent waiting for other Processes, minimum time spent waiting for
Resources.

6) The maximum time required for Process execution, maxinum time
spent waiting for other Processes, maximum time spent waiting for
Resources. -

7) Total number of times this Process was scheduled to execute.

8) The number of times this Process was scheduled to execute by a
Load or Scenario.

p.

9) The number of times this Process was scheduled to execute due to
a call from another Process.

10) The total number of times this Process completed execution.

11) The total number of times this Process did not complete
execution.

12) Total number of times the execution of this Process was suspended
during execution.

13) Names of Items used in this Process.

14) Number of each Item created by this Process.

15) Number of each Item passed to this Process via the SEND
Primitive.

13-18

. 4.

16) Number of each Item passed out of this Process via the SEND
-.

Primitive.

17) Number of each Item destroyed by this Process.

18) Total number of each Item used in this Process.

19) Mean time each Item was held by this Process.

20) Minimum time an Item was held by this Process.

21) Maximum time an Item was held by this Process. A

22) Standard leviation of time an ITem was held by this Process.

23) Verbal description of the Process.
_

24) How many times each Primitive in the Process was executed. .4

25) Any entry Primitives and their names.

26) Names of other Primitives in this Process.
-

27) Any parameters or Items associated with each Primitive in the
Process. ...:

28) Any comnent associated with each Primitive in the Process.-p

An example of a Process Report is shown in figure 13-13. -4.
4.'.

13-19.

V.- J%

S'

"V.'2

'V.-

TOTAL
PROCESS SAMPLES. SUM MEAN STD DEV... MINIMUM... MAXIMUM...

PROCESS3
TOTAL 10 0. 0. 6. 0. 0.

PROCESS WAIT 0 0. 0. 0. 0. 0.
RESOURCE WAIT 0. 0 6. 0. 0.

TOTAL # # AUTO # CALL # OF # NOT TIMES
SCHEDULE SCHEDULE SCHEDULE COMPLETE COMPLETE SUSPEND.

10 10 0 10 0 0

ITEM CREATED RECEIVED SENT DESTR'D

ITEMI 0 10 0 10

ITEM2 0 10 0 10
ITEM3 0 10 0 10
ITEM4 0 10 0 10
ITEMS 0 10 0 10
ITEM6 0 10 0 10

PROCESS HOLDING TIME
ITEM # SMPLS MEAN MINIMUM.. MAXIMUM... STO DEV...

ITEMI 10 6.00 5.00 5.00 0.
ITEM2 10 4.00 4.00 4.00 0.
ITEM3 10 3.00 3.00 3.00 0.
ITEM4 10 2.00 2.00 2.00 0.
ITEMS 10 1.00 1.00 1.00 0.
ITEM6 10 0. 0. 0. 0.

TOTAL # AVG DELAY MAX DELAY
SENT TO -- NUMBER IN RECEIVE POOL -- TIME DUE TIME DUE

ITEM PROCESS CURRENT AVERAGE MAXIMUM TO ITEM TO ITEM

ITEMI 10 0 0.50 1.00 0. 0.
ITEM2 10 0 0.40 1.00 1.00 1.00
ITEM3 10 0 0.30 1.00 2.00 2.00
ITEM4 10 0 0.20 1.00 3.00 3.00
ITEMS 10 0 0.10 1.00 4.00 4.00
ITEMS 10 0 0. 1.00 6.00 5.00

PROCESS DESCRIPTION

PROCESS3 RECEIVE AND DESTROY ITEMS -- SERIAL # NO MATCH

COUNT ENTRY OPCODE PARM PARM PARM COMMENT

10 START ALL NO
10 RECEIVE ITEMI ITEM2 ITEM3
10 ITEM4 ITEMS ITEM6
10 DESTROY ITEMI ITEM2 ITEM3 DESTROY ALL SIX ITEMS
10 ITEM4 ITEMS ITEMS
10 END

Figure 13-13. Process Report

13-20

13.3 COMMANDS RELEVANT TO VIEWING OLTpWr REPORTS

To view output reports of simulation runs of a model from the AISIM READY
level, one uses the EDIT conmand.

Since the output report is too long to fit on a terminal screen, to view
it all, one must -se sore text editing conmands. Below is a brief review
of the coxmmands that are most useful for this purpose. (This discussion
refers to the VAX/VMS EF text editor).

Note: In the following conmmands "." represents the current line in the

file.

13.3.1 TOP, BQPTDM

To orient the screen to either the top or bottom of the report one should
enter one of these two cowmnands.

TYPE BEGIN
TYPE END

13.3.2 UP, DX44

To move the report either up or down on the screen n lines issue the
command,

TYPE .-n

or

TYPE .+n

and the line n lines up or down fran the current one will be printed.

13.3.3 FIND

To find a certain sequence of characters, sequence, enter the characters
between delimiting single quotes.

TYPE 'SEQFENCIE'

and the screen will print the nearest line down in the text containing the
characters sequence.

.91

,1

13.3.4 LIST -

To print n consecutive lines down fcithe one to which one is currently
oriented, issues the coaumand ,

TYPE . :. +n '. .
and the next n lines will be displayed on the screen.

4,

O,l

.<

i.4

4, ,X

-:: 13-22

APPENDIX A

OPERATIONAL PROCEDURES AND IMPORTANT INFORMATION

A.1 IMPORTANCE OF DATABASE BACKUP AND ALLOCATION

Processes and the other model entities are stored on disk as they are
input to AISIM. Changes and additions made to this information are
reflected in the current version of the database on disk. It is possible
for this database to be damaged if the computer system fails or if the
input session is abnormally terminated while a change or addition is being
made so that it is unusable. In addition, errors made in inputting may
make the stored information nonsensical it they are severe enough. For
these reasons, the BACKUP command is provided.

It is wise to periodically create a backup copy of the database with the
AISIM READY level command "BACKUP". Should a database be damaged, it may
be recreated frcrn the last BACKUP copy by using the "RESTORE" command.

A.2 ABNORMAL TERMINATION OF A DUI OR AUI SESSION

To terminate a DUI or AUI session normally the user must enter the command
END. If the user becomes entwined in a situation which disallows normal
system operation, the following procedures should be followed:

It should be noted that while in a DUI session, only the data entered
prior to the last SAVE command will remain intact after this procedure is
executed. If the system appears to malfunction, caution should be used in
issuing a SAVE command. If the database is the source of the malfunction
and a SAVE conmand is issued, the user might destroy the entire database.
It is better to lose one session's data (by not saving) than to destroy an
entire database.

If the user is on an HP terminal, strike the TERMINAL RESET key until
the message "TERMINAL RPIADY" appears in the upper left hand corner of
the screen; two strikes in a one-second period are required.

Then on any terminal, type the cntl (control) key and the C key
simultaneously.

If no response to these procedures is sce, the user should disconnect the
modem, and try to l> In and reinitilte Al',',M.

It the system resoonds ux' lisplaying "$' the user should reinvoke AISIM.

A-1

', f. .

..4" /

A.3 AISIM PLOTS

The following section is intended to describe in detail how the simulation
plot results produced by the AISIM Analysis function are generated. This
discussion addresses the implementation of the plot function in AISIM with
respect to the physical characteristics of the terminal display and the
driving software. For a user of AISIM, it is generally not necessary to
be aware of implementation specific details. This section has been
included because the plot output fram AISIM simulation runs is the most
visible form of output produced. This data may appear to contradict other
results produced by the AISIM Analyze function (output listing
statistics). This explanation is intended to describe how this function
works so that the AISIM user can explain apparent anomalies.

AISIM produces plotted data for many statistics. The plots represent"instantaneous" output from the simulation because in all cases, a defined

statistic is plotted against time (the y-axis is the statistic value, the
x-axis is the simulation clock). Time is normally considered to be
continuous; therefore, it is "reasonable" to assume that AISLM plots are

continuous. In reality, this is not the case. AISIM plots are produced
by sampling statistics at discrete intervals during the simulation. Each
sample defines a point on the plot. A couple of relationships need to be
known to understand how this sampling technique produces plots.

The first relationship a user must be aware of is the resolution of the
display screen. The terminal graphics terminals have a raster scan
display. A raster is the smallest addressable unit which can be
illuminated on the screen. Within the AISIM plot axis there are a fixed
number of rasters along the x-axis (700 for the HP terminals, 500 for
TEK4105, and 1024 for VT100). What this implies is that up to a fixed
number of points can be plotted along the x-axis without exceeding the
hardware limitations of the display. When an AISIM user specified a
plot be displayed which has more than a fixed number of points, the AISIM
software reduces the data sent to the terminal so that it can be
displayed. This data reduction has the effect of "ignoring" some points.
When points are ignored, the obvious result is that the plots lose
accuracy. This can account for discrepancies between the plotted data and
the simulation summary results, specifically with respect to the minimum
and maximum statistics. The simulation report may indicate that a
Resource queue had a maximum length of 100 when a plot of the current
number in wait for a Resource over time indicates only a maximum value of

80.

Another problem which can occur with respect to plotting is that the plot
sampling can miss activity occurring in the simulation because the sample

* interval is too long. The following default relationship is embedded in
the AISIM software. One hundred data points are sampled for each period
in the Scenario definition of a simulation run.

4h1it ,his implies is that if a Scenario is defined to have only one
)eriod, only one hundred plot saml)l.s will be collected. The sample
interval is calculated as the2 period length/100.0. Suppose the period
length is defined to be 3000 units (where units are seconds, this is I
hour). Plot samples are collected every 36 units (or 36 seconds). If

A-2

activity occurs in the model over time intervals less that 36 units, this
data will not be captured for plotting. This could occur if a user want-:
to see a plot of disk utilization of a computer system over a one-hour
time frame. Since disk operations occur in seconds or less, a plot of the
current number busy of the Resource disk would miss most of the data
points if samples were taken every 36 seconds.

It is possible to adjust the plot sampling interval in the Scenario
definition. The number of samples collected for each plot is computed asthe number of periods in the Scenario multiplied by 100 points.

To reiterate, AISIM plots produce graphs of statistics collected during a
simulation run, and display the results over time. The data for these
plots is collected by sampling discrete intervals. It is not generated by
state changes detected by the simulator. Therefore, the "instantaneous"
plots of "CURRENT" data over time can disagree with accumulated statistics
in the simulation listing.

A.4 PROJDUCING HARDCOPIES OF THE TERMINAL DISPLAY

In addition to producing hardcopies of the Process flowcharts, the HP2631G
Graphics Printer, the TEK4695 copier, or the HP2623 internal printer can
be used to produce hardcopies of the architecture, plots, or Process
diagra-as.

The user is warned especially against copying forms on the TEK4105
terminal since this action will empty the ink wells on the TEK4695 copier.
The interfaces on a TEK4105 terminal define the screen to be a dark blue
color, so attempts to copy the forms screen will cause a page full of blue
ink.

To produce hardcopies of the terminal display of an HP2647A terminal, the
following must be in effect:

1) An HP2631G Graphics Printer must be connected to the HP2647A
Graphics Terminal with the HP-IB communications bus.

2) The HP-IB bus address of the printer must be set to one.

3) The printer must be set to ON LINE mode.

To transfer the display infornation to the printer, the user first presses
the <COMMAND> key. This places the terminal in "command mode".

To transfer text (e.g., Piot titles, LIS[IVAL. responses), the user then
presses the following keys in succession: <Fl> <Fl> <F3> <F3> <F3> <F7>
<1> <RErURN>.

To transfer graphics (e.g., Architecture displays, plots), the user
presses the following keys in succession: <Fl> <FI> <F3> <F3> <F4> <F7><i1> <RET'URN5>. .'

A-3.

NOTE: Any text preceding the cursor position will not be transferred. Thus,
the user should be sure the cursor is placed in the proper position before
placing the terminal in "command mode".

When the transfer process is complete, the user exits the "command mode" .
by once again pressing the <COMMAND> key.

If the user is on a TEK4105 terminal equipped with a TEK4695 printer, the
SCOPY button will copy any data on the screen from the terminal to the
printer.

The user can print the smaller size copies by using the following
procedure before the copy is made:

1. Press the SETUP key (an asterisk should appear).

2. Type HCSIZE 1

3. Press the SETUP key again

4. Perform the copy

The terminal can be reset for normal copy size by following the above
procedure and typing a zero instead of a one in line 2.

If the user is on a HP2623 terminal, the following keys will cause any
data on the screen to be copied to the internal printer:

<modes> - display terminal modes
<remote> - set terminal off line
<enter key> - perform copy
<remote> - set terminal back on line "

% "W

A.'

A-4 .'.

a.

A.5 RANDCMNESS IN RESULTS

There are ten random number streams available for use by the functions
producing the random results associated with Loads, probabilistic
branching (with the PROB Primitive), and Action durations.

For the Load entity, the random number stream is used by the probability
functions that determine the Lime between Process triggerings. For the
PROB Primitive, the random number stream is used in evaluating whether or
not execution should branch to the given point. For the ACTION Primitive,
the random number stream is used by the probability functions that
determine the duration of an Action.

The user may select the random number stream used by each of these three
functions using the EDIT command (see section 7.4) in the AUI. The
default values are one, two, three, for Loads, PROB Primitives, and ACTION
Primitives, respectively. The current stream assignments can be displayed
with the LISTVAL cormand (see section 7.11) in the AUI.

When sinlating a system, the user needs to have a sufficient number of
observations to analyze in order to draw valid conclusions. It is
sometimes desirable to execute additional simulation runs with the same
conditions to obtain additional observations. To do this, the random
number streams should be changed for each additional run. Otherwise, the
results will not change.

A-5

-,j ,

APPENDIX B

AISIM ERRORS

If there are errors detected during the initialization, an error message will
be written below the invalid entry. Following is a list of the initialization
error messages and their causes.

ERROR - VALUE MUST BE NUMERIC S

A non-nuneric value was found as the value of a Constant. The
defined value of a Constant must be numeric. %

ERROR - TABLE ENTRIES MUST BE NI 1ERIC

A non-numeric value was found as an entry in a D or C type Table.All D or C type Table entries must be numeric.

ERROR - ALPHA TABLE X ENTRY IS ILLEGAL TYPE

In an alpha Table, an x entry was a Keyword or other invalid entry. 1
The only valid entries are references to Actions, Items, Processes,
Queues, Resources, or Tables.

ERROR - ALPHA TABLE Y ENTRY IS ILLEGAL TYPE

In an alpha Table, a y entry was a Keyword or other invalid entry.
The only valid entries are references to Actions, items, Processes,
Queues, Resources, or Tables.

ERROR - VARIABLE INITIALIZED TO ILLEGAL TYPE

A Keyword or other illegal type was found as the value of a Variable.
Variables must be initialized to Actions, Processes, Queues,
Resources, Tables, Alpha Literals, or numerics.

ERROR - ATTRIBUTE DEFINED MORE THAN ONCE ".

An Item, Process, or Resource attribute was defined more than once.
The duplicate attribute definitbin should be removed.

ERROR - * NO DEFINED AS A GLWBAL CONSTANT

A non-numeric value it the size field of a QUEUE was not defined as a
global Constant. A non-numeric value for the size must either be the I
word "INFINITE"' o(r a previously defined global Constant.

°'-1.'

''4

A non-numeric value in the total or initial units field of a Resource '

was not defined as a global Constant. The total and initial units of
a Resource must each be either a numeric value or be a previously
defined global Constant.

in the definition of a Scenario, a non-numeric value in the schedule
field was not defined as a global Constant. The schedule must be a
numeric value or a defined Constant.

In the definition of a Scenario, a non-numeric value in the priority
field was not defined as a global Constant. The priority must be a
numeric value or a defined Constant.

ERROR - INITIAL # OF RESOURCE UNITS IS
GREATER THAN TOTAL # OF UNITS

In a Resource definition, the initial number of units defined was
greater than the total number of units of that Resource which were to
be made available.

ERROR - FROM NODE IS NOT DEFINED AS A RESOURCE

In an entry in the Legal Path Table, the node specified in the FROM

NODE column was not the name of a defined Resource.

ERROR - TO NODE IS NOT DEFINED AS A RESOURCE

In an entry in the Legal Path Table, the node specified in the TO
NODE column was not the name of a defined Resource.

ERROR - NEXT NODE IS NOT DEFINED AS A RESOURCE

In an entry in the Legal Path Table, the node specified in the NEXT
NODE column was not the name of a defined Resource.

ERROR - LINK IS NOT DEFINED AS A RESOURCE

In an entry in the Legal Path Table, the link specified in the VIA
LINK column was not the name of a defined Resource. *

ERROR - LABEL MUST START IN COLJMN 1 OR
OPCODE MUST START IN COLUMN 10

In a Process definition, a value was encountered which did not start
in column 1 or in column 10. If the value is a label, it must start
in column 1, or if it is an opcode, it must start in column 10.

ERROR - OPCODE MUST START IN COLUMN 10

In a process definition, a non-label value was encountered which did 7
riot start in column 10. All opcodes must start in column 10.

B-2

,o

.1

ERRO' - NODE NAME IS NOT RECOGNIZED AS A RESOURCE
"p..

An in\ilid value was encountered in the node field of a Process
defiri ion. This field must be blank, contain the word "ALL", or
contiin i value which resolves to the name of a defined Resource. 6.

ERROR . * NAME IN GIVENS LIST IS IN ERROR IN THIS CONTEXT
GLOBAL NAMES, NUMBERS AND CLOCK CANNOT BE GIVEN

The value oL a given parameter for the START figure of a Process was
either a nameric value or the CLOCK. Numeric values and the CLOCK
cannot be defined a-s given parameters in a Process; local variables
must be used.

ERROR - * ITEM IN RECEIVES LIST IS IN ERROR
S

This is a general message indicating an error in a START figure of
type "ITEM" of a Process. This message is generally followed by one
of the two following messages which more specifically describe the
error.

ERROR - ITEM APPEARS TWICE IN RECEIVES LIST

In the definition of a START Primitive of type "Item," an Item was .5.

listed more than once. An Item should only occur once in the .
receives list of the START Primitive.

ERROR - REFERENCE IN RECEIVES LIST IS NOF
DEFINED AS AN ITEM

In the definition of a START Primitive of type "ITEM," a value which
was listed in.the receives list was not defined as an Item. A
Process with an ITEM START can only receive Items.

ERROR- * NUMERI REFERENCE IN CALL PROCESS FIELD -.

In the definition of a CALL Primitive in a Process, the process name .5.-
field contained a numeric value or a keyword. This field must 'Nil
contain the name of a defined Process to be initiated. %

ERROR - RETTURN PARAMETERS NOT ALLOWED FOR CALL NOVAIT OR BLOCK

In the definition of a CALL Primitive in a Process, return parameters
were defined, but the CALL option was defined as NOWAIT or BLOCK.
Only Processes called with a WAIT option can return parameters.

ERROR - * * NMERIC OR GLOBAL MAY NOT BE USED AS RETURN

In the definition of a CALL Primitive in a Process, a numeric value,
keyword, or the CLOCK was defined as a return parameter. Numeric
values, keywords and the C[LOCK c.nno be used is return parameters.

B-3

.. .,,? r .7". ,r, ,r 'w".,, i .4" % W'% . W'i.4 -%'% %" *%**" ," %*_'. * 5' , -. . .. '' ' '.-- . '.--. . " .",-

.- .-N -.

ERROR - BRANCH CONTINUATION DOES NOT FOLLOW A BRANCH STATEMENT

in the definition of a BRANCH Primitive of a Process, the label to
branch to was not given. A branch Primitive must include a label to
branch to.

ERROR - KEYWORD CANNOT BE USED IN PIOB

In the definition of a probabilistic BRANCH Primitive of a Process,
CLOCK or a keyword was used as the probability of BRANCH. These
cannot be used as the BRANCH probability. Valid values for the
BRANCH probability are numeric values and local and global Variables
and Constants.

ERRR -O CHECK REFERENCE MUST BE RESOURCE OR QUEUE

In the definition of a TEST Primitive in a Process, the value to be
tested was defined as a numeric, a global Variable, or a global
Constant. The value to be tested must be a reference to either a
Resource or Queue.

ERROR- * NLMERIC REFERENCE INVALID IN RESOURCE FIELD

In the definition of a RESET Primitive in a Process, the value to be
reset was a reference to a numeric value. The value to be reset must

be a reference to a defined Resource whose allocation is to be

changed.

In the definition of an ALIOC Primitive in a Process, the value in

the name field was a reference to a numeric value. The value in the

name field must be the name of a reference to a defined Resource
which is to be allocated.

In the definition 3t a DfA-',IX Primi, ive in a Process, the value in
the name field was a referertce to a rxueric value. The value in the
name field must be tne name ot rcference to a defined Resource
which is to be dea~l'avo,.,

ERFUR - * , , N I ' , ArIc TYPE FIELD

In the definiti: - in ". - . a Process, the value in
the allocation tjoe ,..2 i2 The valid entries are
"PARTIAL" and "AiX".

4### ERROR - BRANCH LM " ' F_ L N OFD

In the definitin)f - P-)m-:ess, - BRANCH Primitive referenced a label

for which there 4as) currespon,-, E-iTPY label defined. An ENTRY
Primitive Mrnst be tned tl ef ne tht label to be BRANCHed to.

#4## ER.RDR - LkOOP 'JX3L, * >z DE [NED4L) IN PROCESS

In the definition of a i ,s, a LOOP Primitive referenced a label
for which there was no :-orcespondinj E[TFRY label defined. An ENTRY
Primitive must ,x used t')o finc the label to be branched to.

B- 4

. . o 2

L..

ERROR- CHECK LABEL * * NOT DEFINED IN PIOCESS

In the definition of a Process, a TEST Primitive referenced a label

for which there was no corresponding ENTRY label defined. An ENTRY
Primitive must be used to define the label to be branched to.

ERROR - COMPARE LABEL ******** NOT DEFINED IN PROCESS

In the definition of a Process, a COMPARE Primitive referenced a
label for which there was no corresponding ENTRY label defined. An
ENTRY Primitive must be used to define the label to be branched to.

ERROR - READ LABEL ******** NOT DEFINED IN OFD

In the definition of a Process, a READ Primitive referenced a label for
which there was no corresponding ENTRY label defined. An ENTRY Primitive p
must be used to define the label to be branched to.

ERROR - ******** ALREADY DEFINED AS AN ENTRY NAME IN THIS PROCESS

In a Process definition, an ENTRY Primitive was defined twice with
the same label. A label can occur only once in a Process.

ERROR - '* *' KEYWORD CANNOT BE ASSIGNED NEW VALUE
.'

In the definition of an ASSIGN Primitive in a Process, an attempt was .-

made to assign a new value to a Keyword other than $CNODE. Only the
$CNODE keyword can be assigned a new value. p

EROR - N,4UMERIC QUANTITY CANNOT BE ASSIGNED A VAWE

In an ASSIGN Primitive of a Process, an attempt was made to assign a

new value to a numeric value. The only entities which can be 4.

assigned a new value are attributes, Variables, and local variables. I

ER1~RR GLOBAL CON~STANT CANNOT BE ASSIGNED A NEW VALUE -

In an ASSIGN Primitive in a Process, an attempt was made to assign a new
value to a global Constant. The only entities which can be assigned a 4,

new value during a simulation are attributes, Variables, and local I

variables.

ERROR- - NOT RECOGNIZED AS A LOGICAL RELATION

In the definition of a COMPARE Primitive in a Process, the relation field
was invalid. Valid relations are EQ, NE, GE, CT, LE, and LT.

ERROR - NUMERIC "****"CALZNO BE ASSIGNED TO

In the definition of an EVAL Primitive in a Process a numeric was speci-. -
fied in the set variable field. The only entities which can be assigned
a new value by an EVAL are global variables and local variables.

B-5
C

A o]

ERR - CONSTANT " CANNOT BE ASSIGNED TO

In the definition of an EVAL Primitive in a Process, a Constant was speci-
fied in the set variable field. The only entities which can be assigned
a new value by an EVAL are global variables and local variables.

ERROR - KEYWORD " CANNOT BE ASSIGNED TO

In the definition of an EVAL Primitive in a Process a Keyword was speci-
fied in the set variable field. The only entities which can be assigned
a new value by an EVAL are global variables and local variables.

ERROR - ALPHA " CANNOT BE ASSIGNED TO

In the definition of an EVAL Primitive in a Process an alpha literal was
specified in the set variable field. The only entities which can be
assigned a new value by an EVAL are global variatles and local variables.

ERROR - EXPRESSION IS MISSINGP

In the definition of an EVAL Primitive in a Process no arithmetic expres-
sion was specified. Provide an arithmetic expression to be assigned to
the set variable.

EROR - "#" IS AN INVALID CHARACTER IN AN EXPRESSION;
EXPRESSION WILL NOT BE PARSED CORRECTLY.

In the definition of an EVAL Primitive in a Process the arithmetic expres-
sion was found to contain the invalid character "#". The valid
characters are A through Z, 0 through 9, $ and .

ERROR - "a" IS AN INVALID CHARACTER IN AN EXPRESSION - IGNORED

In the definition of an EVAL Primitive in a Process, the arithmetic

expression was found to contain an invalid character. The character will
be ignored. The valid characters are A through Z, 0 through 9, $ and - .

ERROR - EXPRESSION BEGINS IMPROPERLY WITH "**"; A NAME,

NUMBER, FUNCTION, "(", "+", OR "-" IS EXPECTED

In the definition of an EVAL Primitive, an expression within the arith-
metic expression was found to begin incorrectly. The expression must
begin with a name, a number, a function, an openirg parenthesis, a plus
sign or a minus sign.

ERROR - EXPRESSION DOES NOT TER4INATE CORRECTLY

In the definition of an EVAL Primitive, an expression within the arith-
metic expression was found that did not terminate normally. If the
prblern was an unmatched left parenthesis, the following line will appear:

- UNMATCHED LEFT PARTHESIS

B-6

*#### ERROR - INVALID CHARACTER "**" FOLow VALID EXPRESSION

In the definition of an EVAL Primitive, a valid expression was followed
by a character that is invalid in the current context, either"""[

or "]". Check expression syntax.

ERROR - A VALID EXPRESSION IS PRECEDED OR FOLLOWED BY AN
INVALID STRUCTURE

In the definition of an EVAL Primitive a partial expression was recog-
nized, but the rest of the expression contained an error which the parser
could not identify specifically. Check the syntax of the expression.

ERROR - FUNCTION NAME FOLLOWED BY INVALID CHAPACTER "[
- USE PARENTHESES TO ENCLOSE OPERANDS

In the definition of an EVAL Primitive, a term within the arithmetic
expression was a function call that was followed by a left bracket
instead of a left parenthesis.

ERROR - FUNCTION NAME IS INVALID FOLLOWING LEFT BRACKET
- BRACKETS ARE USED TO ENCLOSE ENTITY ATITRIBUTES

In the definition of an EVAL Primitive, a term within the arithmetic
expression was found to contain a function name where an entity attribute
was expected. Brackets are used only to enclose attribute names.

ERROR - INVALID CHARACTER "**" FOLLOWING LEFT BRACKET
- BRACKETS ARE USED TO ENCLOSE ENTITY ATTRIBUTES

In the definition of an EVAL Primitive, a term within the arithmetic
expression was found to contain an invalid character where an entity
attribute was expected. Brackets are used only to enclose attribute
names.

ERROR - INVALID CHARACTER "*"
- "]" EXPECTED TO COMPLETE ATTRIBUTE REFERENCE

In the definition of an EVAL Primitive, a term within the arithmetic
expression was found to contain an invalid character where a closing
bracket was expected. Brackets are used only to enclose attribute names.

ERROR - NUMERIC " ENCOUNTERED FOR ENTITY IN AN
ENTITY [ATTRIBUTE] STRUCTURE

In the definition of an EVAL Primitive, a term within the arithmetic
expression was found to be a numeric value where an entity name was
expected. A Process, Resource, or Item name or a local variable refer-
ring to one of these entities would be a valid entity name.

B-7

ERROR - GLOBAL VARIABLE/CONSTANT " **" ENCCUTERED
FOR ENTITY IN AN ENTITY[ATTRIBUTE] STRJCIUJRE

In the definition of an EVAL Primitive, a term within the arithmetic
expression was found to contain a global Variable or Constant where an

entity name was expected. A Process, Resource, or Item name or a local
variable referring to one of these entities would be a valid entity name.

ERROR - ALPHANUMERIC VARIABLE " *" ENCOUNTERED FOR
ENTITY IN AN ENTITY[ATRIBUTE] STRUCTURE

In the definition of an EVAL Primitive, a term within the arithmetic
expression was found to contain an alphanumeric variable where an entity
name was expected. A Process, Resource, or Item name or a local variable

referring to one of these entities would be a valid entity name.

ERROR - ALPHANUMERIC VARIABLE" **"**""" ENCOUNTERED IN AN
EXPRESSION

In the definition of an EVAL Primitive, a term within the arithmetic

expression was found to be an alphanumeric variable. A term within a
numeric expression must evaluate to a number.

WARNING - FUNCTION "*** REQUIRES ONLY 1 OPERAND -

SECOND OPERAND IS IGNORED

In the definition of an EVAL Primitive, a term within the arithmetic
expression was a function call requiring one operand but two operands
were supplied. The second operand is being ignored.

WARNING - FU CTION " REQUIRES ZERO OPERANDS -

OPERANDS ARE IGNORED

In the definition of an EVAL Primitive, a term within the arithmetic

expression was a function call requiring no operands but one or two
operands were supplied. The operands are being ignored.

ERROR - FUNC2TION "* *" REQUIRES i'.90 OPERANDS

In the definition of an EVAL Primitive, a term within the arithmetic
expression was a function call requiring two operanJs but two were not
supplied. Include two operands in the function call.

ERROR - FUNCTION "****" REQUIRES ONE OPERAND

-. In the definition of an EVAL Primitive, a term within the arithmetic

-. expression was a function call requiring an operand but none were sup-
plied. Include an operand in the function call.

B-8

ERROR - NMERIC VALUE " ENCOUNTERED WHERE A
TABLE REFERENCE WAS EXPECTED

In the definition of an EVAL Primitive, a term within the arithmeti.
expression was found to be a numeric value wt. re a Table name was
expected. A Table name or a local variable r.ferring to a table entity
would be a valid Table reference.

ERROR - KEYJDRD ENCOUNTERED WHERE A TABLE
REFERENCE WAS EXPECTED

0In the definition of an EVAL Primitive, a term within the arithmetic
expression was found to be a Keyword where a Table name was expected. A
Table name or a local variable referring to a Table entity would be a
valid table reference.

ERROR - ALPHANUMERIC VARIABLE " *" ENCOUNTERED
WHERE A TABLE REFERENCE WAS EXPECTED

In the definition of an EVAL Primitive, a term within the arithmetic
expression was found to be an alphanumeric variable where a table name

was expected. A Table name or a local variable referring to a Table
entity would be a valid table reference.

ERROR - * NUMERIC REFERENCE INVALID IN PROCESS FIELD

In the definition of a SEND Primitive in a Process, the Process field
contained a numeric reference. The Process field must contain a
reference of a defined Process.

_%.

ERROR- * REFERENCE INVALID IN ITEM FIELD

In the definition of a SEND Primitive in a Process, the list of Items
to be sent to a Process contained an invalid value. Only Items can
be sent to a Process.

In the definition of a CREATE Primitive in a Process, the list of
Items to be created included an invalid value. Only Items can be *.created by a CREATE Primitive.

In the definition of a DESTROY Primitive in a Process, the list of
Items to be destroyed included an invalid value. Only Items can be
destroyed by a DESTROY Primitive.

In the definition of a FILE Primitive in a Process, the Ttem field
contained an invalid value. The Item field must contain the name of
a reference to a defined Item.

-. 4!

In the definition of a FIND Primitive in a Process, the Item field
contained an invalid value. The Item field must contain the name of
a local variable to be set.

.. 2

B-9

566,

~J. 1 .~ r - .OF ~ W .. .d ,' J r~ ~ U iw v * ~ . ~ ~ ~ ~ ~ - .

In the definition of a REMOVE Primitive in a Process, the Item field
contained an invalid value. The Item field must contain the name ofa variable to be set.

ERI0R - * INVALID QUEUE OPTION

In the definition of a FILE Primitive in a Process, the option field
contained an invalid option. The valid options are FIRST, LAST,
NEXT, and BEFORE.

In the definition of a FIND Primitive in a Process, the option field
contained an invalid option. The valid options are FIRST, LAST,
NEXT, and BEFORE.

In the definition of a REMVE Primitive in a Process, the option
field contained an invalid option. The valid options are FIRST,
LAST, and NEXT.

ERROR - ******** REFERENCE INVALID IN QUEUE FIELD

In the definition of a FILE Primitive in a Process, the queue field
contained an invalid value. The queue field must contain the name of
a reference to a defined Queue.

In the definition of a FIND Primitive in a Process, the queue field
contained an invalid value. The queue field must contain the name of

a reference to a defined Queue, or the name of a valid
cross-reference set: Action, Constant, Item, Process, Queue,
Resource, Table, or Variable.

In the definition of a REMOVE Primitive in a Process, the queue field
contained an invalid value. The queue field must contain the name of
a reference to a defined Queue.

ERROR - - RESUME REFERENCE MUST NOT BE NUMERIC OR GLOBAL

In the definition of the RESUME Primitive, a numeric value or a
Constant or Variable was encountered in the Process field. This
reference must be a local variable.

ERROR- * IS NOT DEFINED AS A FILE NAME
In the definition of a READ Primitive, the file name field contained a
name that does not refer to a valid file name. Provide a valid file name.

ERROR - FILE ******** HAS ALREADY BEEN USED IN A WRITE PRIMITIVE

In the definition of a READ Primitive, the file name field contained a
file name that is being used to write to. A file can be used either forwriting or reading but not both.

-

B- 10

i

ERROR - GLOBAL CONSTANT *CANNOT BE ASSIGNED A NEW VALUE

In the definition of a READ Primitive, the variable reference field
contained the name of a global constant, which cannot be assigned t b
during a simulation. A local variable would be valid in the field. .

ERROR - NUMERIC QUANTITY ******** CAN NOT BE ASSIGNED A VALUE

In the definition of a READ Primitive, the variable reference field
contained a numeric quantity which cannot be assigned to. A local
variable would be valid in the field. '..

ERROR - KEYWORD ******** CAN NOT BE ASSIGNED NEW VALUE

In the definition of a READ Primitive, the variable reference field
contained a Keyword which cannot be assigned to. The $CNODE, $TASK and I
$ITASK Keywords can be assigned to.

ERROR - KEYwDRD ******** CANNOT BE MODIFIED, ONLY ATTRIBUTES
CAN BE ASSIGNED TO

In the definition of a READ Primitive, the variable reference field was
found to contain a Keyword without an attribute. Supply an attribute of
the $TASK or $ITASK Keyword to be set.

ERROR - ALPHA STRING ******** CAN NOT BE ASSIGNED A VALUE %

In the definition of a READ Primitive, the variable reference field was
found to contain an alpha literal which cannot be assigned to. A local
variable would be a valid set value name.

#*## ERROR -OR NOT OPENED, TOO MANY EXITERNAL FILES

In the definition of a READ Primitive, the file name field referenced a
file and caused the number of files referenced to exceed 78. Only 78
files can be referenced.

In the definition of a WRITE Primitive, the file name field referenced a

file and caused the number of files referenced to exceed 78. Only 78
files can be referenced.

ERROR - ATTRIBUTE ******** APPEARS FOR A TYPE THAT CANOJT
HAVE ATTRIBUTES "->"

In the definition of a READ Primitive, the variable reference field con-
tained a Keyword with an attribute which cannot be assigned. The $CNODE
Keyword cannot have attributes assigned t.

In the definition of a WRITE Primitive, the variable reference field con-
tained an alphanumeric variable or alpha literal with an attribute which
cannot be assigned to.

B,1

B- 11 1/

ERROR - IS NOT DEFINED AS A FILE

In the definition of a WRITE Primitive, the file name field contained a
name that does not refer to a valid file name. Provide a valid file name.

ERROR - FILE ******** HAS ALREADY BEEN USED IN A READ PRIMITIVE

In the definition of a WRITE Primitive, the file name field contained a
file name that is being used to read frcn. A file can be used either for -

writing or reading but not both.

- ERROR - TRACE MODE MUST BE EITHER 'ON' OR 'OFF'

In the definition of a TRACE Primitive, the ON/OFF field contained a

value other than "ON" or "OFF". These are the only valid values.

ERROR - * IS AN INVALID TIME UNIT

In the definition of the ACTION Primitive, the value in the time units

field was not a valid time unit. The valid time units are nseconds,

useconds, mseconds, seconds, minutes, hours and days.

In the definition of a Load, the value in the time units field was not a
valid time unit. The valid time units are nseconds, useconds, mseconds,
seconds, minutes, hours, and days.

In the definition of a Scenario, the value in the time units field for
the schedule time was not a valid time unit. The valid time units are
nseconds, useconds, mseconds, seconds, minutes, hours, and days. w

In the definition of a Scenario, the value in the time units field for
the period length was not a valid time unit. The valid time units are
nseconds, useconds, mseconds, seconds, minutes, hours, and days.

In the definition of a Scenario, the value in the output time units field
was not a valid time unit. The valid time units are nseconds, useconds, ,
mseconds, seconds, minutes, hours and days.

ERROR - ******** IS AN INVALID RESTART OPTION
- USE "RESTART" OR "RESUME"

In the definition of an ACTION Primitive in a Process, the value in the
restart field was not a valid ACTION restart option. The valid options

are as listed. "A

ERROR - LOAD NODE IS NOT RECOGNIZED AS A RESOURCE

In the definition of a Load entity, a value was encountered in a node
field which was not a reference to a defined Resource. Nodes must be 7
Resources. .'

B-12

I'

N

ERROR- * IS NOT DEFINED AS A PROCESS

In the definition of a Load, the name specified in the process field
was not defined as a Process. The name specified in this field musL
be a defined Process.

ERROR - * IS NOT A WAD DISTRIBUTION FUNCTION

In the definition of a Load, the name specified in the schedule field
was not a valid Load distribution.

ERROR - ******** IS NOT DEFINED AS A CONSTANT OR VARIABLE

In the definition of a Load, a non-numeric value in the rate field
was not defined as a global Constant or variable. If the rate field
contains a non-numeric value, it must be a defined global Constant or
Variable.

In the definition of a Load, a non-numeric value in the mean field
was not defined as a global Constant or Variable. If the mean field
contains a non-numeric value, it must be a defined global Constant or
Variable.

In the definition of a Load, a non-numeric value in the delta field
was not defined as a global Constant or Variable. If the delta field
contains a non-numeric value, it must be a defined global Constant or
Variable.

In the definition of a Load, a non-numeric value in the priority
field was not defined as a global Constant or Variable. If the
priority field contains a non-numeric value, it must be a defined
global Constant or Variable.

ERROR - NO SCENARIO DEFINED

No Scenario was defined. There must be a Scenario defined in order

to run a simulation on a model.

ERROR - PERIOD NOT DEFINED

In the definition of a Scenario, the period was not defined. The
period length for a Scenario can be a numeric value or a defined
Constant.

ERROR - TRIGGER ******** NOT DEFINED AS A LOAD OR PROCESS

In the definition of a Scenario entity, a value in the trigger field

was not a Load or Process. Scenario triggers must be either Loads or
Processes.

B-13

• -I , " " , +' . + , + ." + " ,, V+ .. +, " ,- ".. .. .+.• +' +,+ ./ + " ". "i ,.' '.",.",..-,',,'.. ... ,'

WARNING - "*** DISTRIBUTION ONLY REQUIRES I PARAMETER

In the definition of an ACTION Primitive in a Process, the specified
distribution required only one parameter, but two were supplied. The
extra parameter should be deleted or the distribution should be
changed.

WARNING - N ODT LEGAL. USING D INSTEAD. %

An illegal Table type was specified. The Table is being assumed to
be discrete. The valid table types are continuous (c), discrete (d),
and alpha (a).

WARNING - ATITRIBUTE INITIAL VALUE IS NOT DEFINED

In the definition of an Item, Process, or Resource an attribute was
not assigned an initial value or was assigned an invalid value.
Attributes must be initialized.

WARNING - BLANK PRIORITY FIELD ASSUMES PRIORITY 0

In the definition of a CALL Primitive of a Process, the priority
field was left blank. The priority is assumed to be zero.

In the definition of a Load entity, the priority field was left
blank. The priority is assumed to be zero.

In the definition of a Scenario entity, the priority field was left
blank. The priority is assumed to be zero.

WRNING - * IS AN ILLEGAL OPTION. USING NOWAIT INSTEAD.

In the definition of a CALL Primitive of a Process, the option field
contained an invalid option; a NOIT option is being assumed. The
valid options are BLOCK, WAIT, and NOWAIT.

WARNING - '* *' IS NOT RECOGNIZED IN THIS CONTEXT

In the definition of an ASSIGN Primitive of a Process, an attempt was
made to assign a numeric value or a Constant or Variable, but there
was also a value in the qualifier field. The qualifier is being
ignored.

In the definition of an ASSIGN Primitive in a Process, an attempt was
made to assign a value to the $CNODE keyword, or an attempt was made

to assign a value to a Variable, but there was also a value in the
qualifier field. The qualifier is being ignored.

WRNING - - NO QUALIFICATION RECOGNIZED FOR IDENTIFICATION

In the definition of a COMPARE Primitive in a Process, an

unrecognizable qualifier for a numeric, a global Variable, or a
global Constant was encountered. Qualifiers are allowed only for
Items, Processes, Resources, and certain keywords.

B-14

WRNING - * IS NOT AN ACTION DISTRIBUTION - USING CONSTANT

In the definition of an ACTION primitive in a Process, the value in
the method field was not a valid Action distribution; the
distribution is being assumed to be CONSTANT. The valid NO
distributions are exponent, constant, lognormal, normal, uniform,

!%
Weibull, gamma, and Erlang. *

**** ERRORS WERE DETECrED DURING MODEL INITIALIZATION

The number of errors specified were encountered during the initialization

of the model and prevented the initiation of the simulation.

If an execution error occurs during the simulation, execution will halt and an
error message will be printed in the statistical sunmary. In some cases there
may be a Simscript 11.5 traceback. This traceback is a hexadecimal formatted
report which is to be disregarded by the user. Following the error messages,
the statistical summary lists the state of the Process which was executing
when the error occurred. The value of all local variables and attached
attributes for the Process are listed. All other output reports are also
generated.

Following are all of the execution errors which are produced and an explana-

tion of the conditions which cause each error.

EXECUTION ERROR DETECTED IN PROCESS *

An error occurred in the specified Process which caused an abnormal
termination of the simulation.

EXECUTION ERROR - BRANCH PROBABILITY FOR CURRENT
STATEMENT IS NOT A NUMBER

The BRANCH probability in a BRANCH Primitive in a Process does not
evaluate to a number.

*### EXECUTION ERROR - LtOP NLI4BER FOR CURRENT

STATEMENT IS NOT A NUMBER

The value of the ILOOP counter in a Process is not a number.

EXECUTION ERROR - TEST STATEMENT ENTITY IS

NOT A RESOURCE OR QUEUE

The value to be tested by a TEST Primitive in a Process is not a
Resource or a Queue. The TEST Primitive can only test a Resource or
a Queue.

EXECUTION ERROR - VAUIE OF RF.(I- TN CURRENT
STATEMENT IS NOP A NUMBER

The value for the number of units to be reset by a RESET Primitive is
not a number. The value .or the nurrthr Df units to be reset must
evaluate to a nuaber.

B- 15,.

EXECUTION ERRR - ATTEMPT TO RESET # OF RESOURCE ,e
UNITS OUTSIDE OF LEGAL LIMITS

An attempt was made to reset a number of Resource units which woulJ
make the number of units inactive or active greater than the total
number of units which were defined for this Resource.

EXECUTION ERROR - VALUE OF UNITS REQUESTED IN CURRENT_%
STATEMENT IS NOT A NUMBER _

The units field ,i c-, ALLOC Primitive did not resolve to a number.
This field must esolve to a number.

##*# EXECUTION ERROR - VALUE OF PRIORITY IS NOT LEGAL

The Priority field in an ALLOC Primitive did not resolve to a number.
This field must resolve to a number.

EXECUTION ERROR - VALUE OF UNITS TO BE RELEASED IN CURRE0'T

STATEMENT IS NOT A NUMBER

The units field in a DEALLOC Primitive did not resolve to a number.
This field must resolve to a number.

EXECUTION ERROR - RESUME ATTEMPTS TO RESUME A PRCESS WHICH
IS NOT SUSPENDED

An a ttempt was made to resume a Process instance which was not
suspended.

##*# EXECUTION ERR)R - A REFERENCE IN THE CURRENT PROCESS EVALUATES TO
AN ILLEGAL TYPE FOR THE CURRENT STATEMENT

The Resource field in a RESET Primitive did not resolve to a
Resource. This field must resolve to a defined Resource entity.

The Resource field in an ALLOC Primitive did not resolve to a -

Resource. This field must resolve to a defined Resource entity.
Ii

The Resource field in a DEALLOC Primitive did not resolve to a
Resource. This field must resolve to a defined Resource entity.

L #### EXECUTION ERIOR - AN ACTION REFERENCE DOES NOT EVALUATE TO A NUMBER

The scheduling time or the scheduling delta time for an action does
not evaluate to a number.

EXECUTION ERROR - PRIMITIVE REFERENCE DOES NOT EVALUATE TO AN ACTION

An undefined opcode for a Primitive was encountered. The opcode was
assumed to be the name of a reference to an Action, but it did not

resolve to a defined Action name.

ON.

EXECUTION ERROR - PROCESS IN CURRENT CALL STATEMENT IS NOT
DEFINED AS A PROCESS.'

An attempt was made by a CALL Primitive to initiate a Process which
was not defined. The Process name in a CALL Primitive must be a
reference to an entity defined as a Process. .

EXECUTION ERROR - PRIORITY IN CALL DOES NOT EVALUATE TO A NUMBER _,

The priority in a CALL Primitive did not evaluate to a numbe. The•'

priority for calling a Process must evaluate to a number. ,\

EXECUTION ERROR - DISAGREEMENT IN NUMER OF GIVEN PARAMETERS ""

BETWEEN CURRENT CALL STMT AND CALLED PROCESS -

~Jwuh~wtW'T .

The number of given parameters in a CALL Primitive differs from the ..
number of given parameters in the definition of the Process to be

called. These parameters muast correspond. Noel.

EXECUTION ERROR - DISAGREEENT IN NUMBER OF RETURN PARAMETERS

BETWEEN CURRENT CALL STMT AND CALLED PROCESS ,

The number of return parameters in a CALL Primitive differs frm the
number of return parameters in the definition of the Process to be

called. These parameters must correspond.

EXECUTION ERROR - ORDER RELATIONS ARE NOT DEFINED FOR CMPARE TYPES.

For the non-numeric types being compared, an invalid relation was
specified. The only valid relations for these types is equal or not

equal. '.

#*## EXECUTION ERROR - ILLEGAL ASSIGN: CURRENT NODE EPAT

MUST BE SET TO A RESOURCE A

An EVAL or ASSIGN Primitive attempted to set the current node to a
reference which was not a defined Resource. The current node must be a

Resource.,.

EXEC'UTION ERROR - ASSIGN ATTEMPTS TO MODIFY A QUALIFIED
TYPE MOR WMICH No ATRIBUTE IS DEFINED

An attempt was made to assign a new value to an attribute of an the
entity for which no attributes can be defined. Only Processes,

Resources, and created tems have attributes which can be modified.

EXECUTION ERROR - ORDER ATISIBUE NOT DEFINED FOR ITEM TP

An attempt was made to assign a new value to a nonexistent attribute

of a,i Item.

V.'-.

B-17 ,,

##**EXECTIONER~R- ILEGALASSIN: CRREN, JD

EXECUTION ERR - AI'RIBUTE NOT DEFINED

An attempt was made to assign a new value to a nonexistent attribute
of a Process or a Resource.

EXECUTION ERROR - ASSIGN ATTEMPTS TO MODIFY A TYPE MICH CANNOT
BE MODIFIED

An attempt was made to assign a new value to an entity which cannot
be modified; i.e., a global Constant, a number, or a keyword other
than $CNODE.

EXECUTION ERROR - ATTEMPT TO CREATE AN ENTITY
WHICH IS NOT AN ITEM

An attempt was made to create an entity which is not an Item. Only
references to Items may be in the create list of the CREATE
Primitive.

EXECUTION ERROR - ATTEMPT TO DESTROY AN ITEM WHICH IS
CURRENTLY FILED ON A QUEUE

An attempt was made to destroy an Item which had been filed on a
Queue and not removed before execution of the DESTROY Primitive.

EXECUTION ERROR - CURRENT PROCESS ATTEMPTS TO DESTROY AN ITEM
WHICH IS NOT DEFINED OR DOES NOT EXIST

5,]

An attempt was made to destroy an Item which was not defined or
created, or which has already been destroyed.

EXECUTION ERROR - PROCESS FIELD IN SEND STATEMENT IS NOT
DEFINED AS A PROCESS

5°,

The reference in the Process field of a SEND Primitive was not
resolved as a Process. Items can only be sent to a defined Process.

I.

**# EXECUTION ERROR - ATTEMPT TO SEND AN ITEM WHICH IS
CURRENTLY FILED ON A QUEUE

An attempt was made to send an Item to another Process before the Itemwas removed from the Queue on which it is currently filed.

EXECUTION ERROR - CURRENT PR OCESS ATTEMPTING TO SEND A ENTITY
WHICH IS NOT DEFINED AS AN ITEM

An attempt was made by a SEND Primitive to send an entity other than
an Item to a Process. Only references to Items may be specified in
the SEND Primitive.

B-1

.5.
S

•B- 18 '

.P 4A' 4.W' pS ' ' . -'W '. 'w
-

' .' ,' - '""" , .- " % ." w" . " '. *" ." - -, - - 5 .5 , ,

EXECUTION ERROR - ITEM ******** ATTEMPT TO BE RECEIVED BY PROCESS
******** IS NOT IN PROCESS NEED LIST

An attempt was made to cause a Process to receive an Item which was
not on the list of Items which the Process should receive.

EXECUTION ERROR - CURRENT PROCESS ATTEMPTS TO FILE AN ENTITY
WHICH CANNOT BE FILED

An attempt was made by a FILE Primitive to file an entity which
cannot be filed. Only Items can be filed.

EXECUTION ERROR - CURRENT PROCESS ATTEMPTS TO FILE AN ITEM
ON AN UNDEFINED QUEUE

An attempt was made to FILE an Item on a Queue which was not defined.
The cueue reference in the FILE primitive must resolve to a defined
Queue.

EXECUTION ERROR - CURRENT PROCESS ATTEMPTS TO FILE AN ITEM
WHICH IS ALREADY ON A QUEUE

An attempt was made to refile an Item. An Item can be filed on only
one Queue at any given time.

EXECUTION ERROR - CURRENT PROCESS ATTEMPTS TO FILE AN ENTITY
BEFORE OR AFTER AN UNDEFINED ENTITY

An attempt was made to file an entity before or after an entity which
did not exist on the Queue.

EXECUTION ERROR - CURRENT PROCESS ATTEMPTING TO REMOVE
AN ITEM FROM AN UNDEFINED QUEUE

An attempt was made to remove an entity fram an undefined Queue.

EXECUTION ERROR - CURRENT PROCESS ATTEMPTING TO REMOVE
'NEXT' ITEM WHICH DOES NOT EXIST

An attempt was made to remove a non-existent current Item from a
Queue.

EXECUTION ERROR - A REFERENCE FOR A QUEUE IN A FIND PRIMITIVE
IS NOT DEFINED AS A QUEUE OR XREF SET

An invalid reference was specified in a FILE Primitive as the queue
name. Only Queues or cross reference sets are valid for the Queue
name field.

B-19

E' .,.;, b ''.',,l3, 'rv'Lv,.,[' .' .' .
>

'; ,' ' '.' ',-.-.-',. .'. -,.-j -..-.. . .'.. . .]?

.'
'I -,- ' "" l-' - ' , - r " ' ' - ' ' , , P ' ' ' ' . -L , ' , : . - -K .ii t

a #### EXECUTION ERROR - ATTF4PT TO SET AN ATTRIBUTE OF AN ENTITY FOR a

WHI('i NO ATTRIBUTES ARE DEFINED

An attempt was made bj a READ Primitive to set an attribute of an entity
which has none.

EXECUTION ERROR - ILLEGAL VALUE * CURRENT MODE MUST BE SET
TO A RESOURCE

* h"

In a READ Primitive, an attempt was made to assign a value to $CNODE
which was not a Resource. $CNODE must be set to a defined Resource
entity.

.-

EXECUTION ERROR - CURRENT PROCESS ATTEMPTS TO OUTPUT AN INVALID
ENTITY

An attempt was made by the WRITE Primitive to write the name of an
invalid or nonexistent entity.

EXECUTION ERROR - ATTRIBUTE ******** APPEARS FOR A TYPE THAT CANNOT
HAVE ATTRIBUTES

An attempt was made by the WRITE Primitive to write the value of an
attribute for a type that cannot have attributes. The invalid type is a
global variable, a constant or a numeric value.

EXECUTION ERROR - ******** FRO 4 EXTERNAL FILE ISN'T A VALID ENTRY

The value read from a file for a READ Primitive was not the name of a
defined entity. All names must be valid entities.

EXECUTION ERROR - ******* ATTRIBUTE OF A RESOURCE IS NOT DEFINED

An attempt was made to reference a non-existent attribute of a
Resource. Valid attributes are NIDLEQ, NBUSYQ, NWAITQ, NINACTQ, as
well as user-modifiable attributes.

EXECUTION ERROR - ******* ATTRIBUTE OF A RESOURCE UNIT NOT DEFINED
IP

An attempt was made to reference a non-existent attribute of a
Resource unit. Valid attributes are NIDLEQ, NBUSYQ, NWAITQ, NINACTQ,
as well as user-modifiable attributes.

EXECUTION ERIOR -OR ATTRIBUTE OF A PROCESS IS NOT DEFINED

An attempt was made to reference a non-existent attribute of a
Process.

EXECUTION ERROR - * ATTRIBUTE OF A TASK IS NOT DEFINED

An attempt was made to reference a non-existent attribute of a Task.

B-20

'# T'
'

S

;K' - . * - -,- . . -. -. .".-. -. A A S. .. o. : ... '. *.. . _..j...-....7

EXECUTION ERROR - * ATTRIBUTE OF QUEUE NOT DEFINED

An attempt was made to reference an invalid attribute of a Queue.
The valid attributes are NQUEUE and TQUEJE.

EXECUTION ERIOR - ******* AITRIBUTE IS NOT DEFINED FOR CURRENT
ITEM REFERENCE ******* IN EXECUTING LOGIC

An attempt was made to reference a non-existent attribute of an Item.

EXECUTION ERROR - ******* ATTRIBUTE SPECIFIED FOR A TYPE
FOR WHICH NO ATTRIBUTES CAN BE DEFINED

An attempt was made to reference an attribute of a type which does

not have attributes. Entities which have attributes are Resources,
Processes, and Items.

EXECUTION ERROR - KEYWORD REFERENCE IS BLANK

4When the simulator tried to resolve a Keyword, the reference field
for the parameter was found to be blank.

EXECUTION ERROR - PROCESS NODE HAS NOT BEEN DEFINED

An attempt was made to reference the process node of a Process, but
the node was not defined.

EXECUTION ERROR - REFERENCE FOR $ NODE IS NOT A PR OCESS

When the simulator tried to resolve the Keyword $NODE, the reference
was not a Process.

EXECUTION ERROR - ROUTE SET ERRiOR - NO PATH IN NETWRK

When the simulator tried to resolve $NXTNODE or $LINK, there was no
valid path defined in the LPT.

EXECUTION ERROR - CNODE FOR EXECUTING PROCESS NOT DEFINED

When the simulator tried to resolve a link or a next node, there was
no current node defined for the executing Process.

ERROR - ILLEGAL TYPE

In a Process which was executing when an abnormal termination of the
simulation occurred, a local variable was of an invalid type.

ERROR - ILLEGAJ, AI'TRIBUTE TYPE

In a Process which was executing when an abnormal termination of the
simulation occurred, a local variable which resolved to an Item, a
Process, or a Resource had an invalid attribute.

B-21

EXECUTION ERROR - NON-NUMERIC VALUE ENCOUNTERED FOR OPERAND
IN ******** OPERATION

The operand for the function in an EVAL Primitive does not evaluate to a
number.

EXECUTION ERROR - NON-NUMERIC VALUE ENCOUNTERED FOR FIRST
OPERAND IN ******** OPERATION

a

The first operand for the function in an EVAL Primitive does not evaluate
to a number.

EXECUTION ERROR - NLON-NUMERIC VALUE ENCOUNTERED FOR SECOND
OPERAND IN ******** OPERATiJN4

The second operand for the function in an EVAL Primitive does not evalu-

ate to a number.

EXECUTION ERROR - ATTEMPT TO PERFORM DIVISION BY ZERO

In an EVAL Primitive, an attempt was made to divide by zero.

EXECUTION ERROR - ATTEMPT TO TAKE THE SQUARE ROOT OF A
NEGATIVE NUMBER

In an EVAL Primitive, the operand of a SQRT function was a negative
number.

EXECUTION ERROR - ATTEMPT TO CALCULATE THE ARC COSINE OF
A NUMBER THAT IS NOT BETWEEN -1 AND 1

In an EVAL Primitive, the operand of an arc cosine function was not a
valid number.

EXECUTION ERROR - ATTEMPT TO CALCULATE THE ARC SINE OF
A NUMBER THAT IS NOT BETWEEN -1 AND I

In an EVAL Primitive, the operand of an arc sine function was not a valid
number.

EXECUTION ERROR - ATTEMPT TO CALCULATE THE ARC TANGENT OF ZERO

In an EVAL Primitive, an attempt was made to calculate the arc tangent of
zero.

EXECUTION ERR)R - ZERO OR NEGATIVE NUMBER DETECTED
IN BETA FUNCTION

In an EVAL Primitive, one or both of the operands of a beta function was
less than or equal to zero.

EXECUTION ERROR - ATTEMPT TO CALCULATE THE NATURAL LOG OF A
NUMBER THAT IS LESS THAN OR EQUAL TO ZERO

B-22

_ ,,.%W.. ... t% Y ,U~ _~~ - ~ P . . . P i.,.,'e-•e' *:,. -. ,. ,".^- 2 .,'i-. . . * .. .,o222 i-

h~bi .* S- -. . . '* - " :. °'- °° .S. *, -, . .

.,

In an EVAL Primitive, the operand of a logarithm function was less than
or equal to zero.

EXECUTION ERROR - ATTEMPT TO COMPUTE THE LOG (BASE 10) OF A
NUMBER THAT IS LESS THAN OR EQUAL TO ZERO

In an EVAL Primitive, the operand of a LOG10 function was less than .

equal to zero.

EXECUTION ERFOR - NAME IN TABLE STRUCTURE IN AN EXPRESSION
DOES NOT EVALUATE TO A TABLE REFERENCE

In an EVAL Primitive, a name followed by parentheses does not evaluate to

a Table. This error may also be caused by a misspelled function name.

EXECUTION ERROR - INDEX INTO DISCRETE TABLE
DOES NOT EVALUATE TO A NUMBER

In an EVAL Primitive, an attemfpt was made to look up a value in a dis-
crete Table, but the index does not evaluate to a number.

EXECUTION ERROR - INDEX INTO CONTINUOJUS TABLE
DOES NOT EVALUATE TO A NUMBER

In an EVAL Primitive, an attempt was made to look up a value in a con-

tinuous Table, but the index does not evaluate to a number.

WARNING - ALPHA TABLE LOOKUP FAILED

In an EVAL Primitive being used to look up a value in an alpha Table,
a value was not found which corresponded to the lookup index value.

WARNING - EMPTY TABLE DETECTED

A Table was encountered which did not have any entries in it. P5

EXECUTION ERROR - CHKTYP ROUTINE ERIOR WITH LINE:

The simulator encountered difficulty in determining the type of a value
it was trying to process.

EXECUTION ERROR - INVALID GLOBAL VARIABLE SPECIFIED FOR TXTOAL: *

The simulator encountered an error during a data conversion operation.

* . #### SIMULATOR ERROR IN COMPUTING NEXT TIME ON
METHOD = * REFI = * REF2 = * STREAM =

St

An error occurred when an attempt was made to compute the next time %
in the simulation.

,%S

SIMUlATOR ERROR - QUEUE.START ATTEMPT 'O FILE UNSUCCESSFUL

SI A

B-23

.

The simulator attempted to restart tasks blocked from a Queue when
there were no tasks currenty blocked.

SIMULATOR ERROR - ERROR PARSING TEW

A program error occurred while parsing a term within the arithmetic
expression of an EVAL Primitive.

SIMULATOR ERROR - ERROR PARSING FA(CTOR

A program error occurred while parsing a factor wiLhin the arithmetic
expression of an EVAL Primitive.

SIMULATOR ER1MJR - ERROR PARSING PRIMARY
A program error occurred while parsing a primary within tne arithmetic
expression of an EVAL Primitive.

SIMULATION ERROR - ERROR PARSING FUNCTION

A program error occurred while parsing a function call within the arith-

metic expression of an EVAL Primitive.

SIMULAIOR ERROR - ERROR PARSING IDENTIFIER

A program error occurred while parsing an identifier within the arith-
metic expression of an EVAL Primitive.

SIMULATOR ERROR - ATTEMPT TO SUSPEND MORE UNITS
OF ******** THAN EXIST

The simulator attempted to release more Resource units from a Process
than the Process had.

SIMULATION ERROR - NONZERO STACK AFTER ENTITY[ARIBUTEI] EVACUATION

A program error occurred during the processing of an entity[attribute]
structure in an EVAL Primitive.

B'2

I~i

B- 24

APPENDIX C

GLCISSARY

ACTION - A discrete event that consumes time during a simulation run.

ANALYSIS USER INTERFACE (AUI) - The interface between the user and the AISIM
simulator.

ANALYSIS USER INTERFACE (AUI) READY STATE - Any time after the Analysis User
Interface has been invoked, except during a simulation period. This state
is indicated by the "" prcpt.

ARCHITECTURE DESIGN EDITOR (ADE) - A sublevel of the DUI which provides the
user with the graphics commari~s to construct a system architecture.

ARCHITECTURE DESIGN EDITOR (ADE) MENU - A representation of the valid symbols
available to the user during an ADE session for building an architecture.

See ADE MENU.

ARCHITECTURE DESIGN EDITOR (ADE) READY STATE - The state of the system while
in the ADE that allows the user to enter commands. This state is
indicated by the "#" prcmpt.

ATTRIBUTE - The specific characteristic of a defined entity.

ATTRIBUTE FORM - A list of available attributes from which the user must
select one attribute to be used for testing or data sampling.

BLOCK - Used in conjunction with the CALL Primitive (see section 3.9.5) to
indicate that the calling task is to call the specified task and wait

until all associated tasks are ccmplete before continuing.

BREAKPOINT - A user-specified condition which, when reached, suspends the
simulation to allow the user to monitor the current state of the
simulation.

CONSTANT - A value that is not subject to change once a simulation run has
been started.

DATABASE - The accumulation of data in a specified form related to a specific
function or operation.

DEFAULT CONDITION - The condition that exists if no parameters are explicitly
stated.

DESIGN USER fINTERFACE (DUI) - The interface that allows the user to create or
modify a design database.

C-1

SA -A LA :.

DESIGN USFR INTERFACE (DUI) READY STATE - Any time after invocation of the j
Design User Interface, except when utilizing the PEI or ADE sublevels of

the DUI. This state is indicated by the "*" prompt.
I

ENTITY - A predefined set of constructs that have user defined attributes (see
section 3 for valid AISIM entities). They are the "building blocks" with
which the user creates his model.

ENTITY-NAME - The user-defined name of a valid entity.

ENTITY-TYPE - A type as opposed to a specific, user-defined instance of an
entity.

FORMS MODE - A specific function that provides areas which may be filled in by
the user, and protected fields which define the areas to be filled in. S

INFINITE RESOURCES - A feature which allows the simulator to simulate a
Process as if there were no limit to the number of Resources available to
it.

LOAD - The amount of act'vity to be applied to the simulation of a process.I1

L-NODE - A leaf node in an architecture which typically represents an external
load on the system.

MODEL - A group of AISIM entities which represent a certain function or group
of functions.

I

NOWAIT - Used in conjunction with the CALL Primitive to indicate that a
Process is to be called by a parent Process and the parent Process is to
continue processing in parallel.

OFF-SCREEN - The portion of a graphics picture not visible to the user.
I

ON-SCREEN - The portion of a graphics picture visible to the user. ...

PERM4ANENT DATABASE (scmetimes referred to as the Design database) - The
user-named database, in which the data for a modeled system resides. (As
opposed to the working database which temporarily holds Design data while
editing that data). I

PRIMITIVE - The model entity used to model individual steps in an operation or
function. A Process is constructed from a sequence o' Primitives.

PROCESS - A graphical representation of a sequence of events, activities and
decisions that models a real-world operation or function.

PROCESS EDITOR INTERFACE (PEI) - A sublevel of the DUI that provides the user
with the graphics commands to construct Processes.

C-2
->

PROCESS EDITOR INTERFACE (PEI) ENU - A rcspre*, + ,i) <e ,alit Primitives

available to the user during a PEI .s:+ r.

PROCESS EDITOR INTERFACE (PEI) READY STA7 I - The _t A, We svstuk. 4h7 in
the PEI that allows the user to enter :.i vanms. .,-I s 'stat-e s Ind:-ated

by the "' prarnpt.

QUERY - A request for information.

RELATIONAL OPERATOR - A set of mnemonics Unat represent a relation such as
equal, not equal, less than, greater than.

RESOURCE - Representations of the real-world objects that are required oy a
Process to do its work.

REVERSE VIDEO - A feature of a terminil in which dark characters appear on a

light background, rather than light characters on a dark background.

SCROLL - The process of moving data displayed on a terminal either up or down.

STATISTICS FORM - A form presented to the user from which one type of
statistical value must be selected for use in data samplin g.

SYNTAX - A set of rules that determines the structure and arrangement of words
and characters.

TRANSLATOR (XIATOR) - The AISIM database translator that translates the Design
database into a form suitable for input to the simulator.

VARIABLE - A term whose value is subject to change.

WAIT - Used with the CALL Primitive to indicate that the calling Process is to
suspend until the called Process is complete.

WORKING DATABASE - A copy of the user's real database, into which all work is
done on a temporary basis.

-.- 3

3,-

.13 ."-

k

I'

APPENDIX D

MESSAGE ROUTING SUBMODEL

The message routing submodel provides a means for a user to route messages
through a network which is defined by an architecture and a Legal Path Table.

The message routing submodel consists of one Item representing the message
dispatched through the system architecture, four Processes representing the
activities required for the inter-node commurnication and other supporting

entities. Everything required for this model is included in the AISIM system
library and can be merged into a user's model in a simple operation. (See the
Library User Interface, section 10).

Although intra-node communication is modeled by means of a collection of four
Processes, the user need explicitly invoke with a CALL Primitive (see section
3.9.5) only one of them. To represent the intra-Node triggering of a Process
one calls the first Process in the submodel called "MRS". This process is
called using a WAIT option if the user wishes to suspend the calling Process
until message routing submodel processing is complete. It allows the calling
Process to wait for a response message to be sent back to the calling node
before it continues processing. If the MRS Process is called with a NOVAIT
option, processing in the message routing submodel will proceed concurrently
with the calling Process.

The calling process must call process MRS with six GIVEN values; no REIJN
values are required. The GIVEN parameters are:

1. the name of the destination process to be triggered,

2. the priority associated with the destination process,

3. the type of message to be generated -- $REQRESP, $REQNORE, or
$RESP. $REQRESP causes a response message to be sent to the
origin, $REQNORE causes no response message to be generated, and
$RESP inhibits both the response message and the triggering of a
destination process,

4. the length of the message,

5. the destination node, and

6. the name of the message item.

The user must also set up attributes of the Resources representing the nodes
and channels (see section 3.6). All nodes which messages uLtilize must have an
MNROUTE attribute which gives the nodal processing delay in time units per
message. Each channel resource must have a RATE attribute giving a channel
transmission delay in time units per character.

D-1

"' * . .Z

~~77 -. 7 7 . 7,;rr' -- r''.-..r-.--vw-

The entities that comprise the message routirbJ submodel are described in the
following sections.

ITEM MSG

This Item is the basic prototype for messages created by the MRS. If the user
does not want specific point-to-point transit times, all statistics for
message routing will be accumulated for this one entity. If specific
point-to-point transit times are desired, the AISIM user copies MSG to another
Item name (through the Design User Interface COPY ccmTand described in section
6.1.2) and provides the unique name as parameter six in the call to the MRS
Process. All attributes of the Item MSG are essential to the message routing
submodel. The attributes are explained below.

DEFINITION OF ATTRIBUTIES FOR ITEM MSG:

Attribute Default Description

Name Value

CNODE $CNODE The current node where the message resides.

FNODE $CNODE The source node of the message.

LENGM 99999999 The length of the message in bytes.

TYPE $REQNORE The message type. $REQRESP is a request
message requiring a response when the
destination is reached. $REQNORE is a
request message with no response required.
$RESP is a response message.

RPRC $ERR/DR The destination Process name.

- RPROCPRI 99999999 The priority for the destination Process.

TNODE $CNODE The destination node.

D-2

%.
i.

-a

- , : -?- -- '.
-

-
.

" , - . . < . . : -, - :- .- - .-- I 1-

RESOURCES

No Resources are contained in the message routing submodel. However, to use
it, the user must specify an architecture. Each nodal Resource which messages
utilize must have an M ROUTE attribute which gives the nodal processing delay

in time units per message. Each channel Resource must have a RATE attribute
giving a channel transmission delay in time units per character.

ACTIONS

Two Action entities are used by the message routing submodel -- ROUTE OH and
XFER OH. ROUTE Oi is found in Process NODEPROC and is used for nodal
processing delays while XFEROH is found in Process CHANPROC for channel
transmission delays.

MESSAGE ROUTING SUBMODEL PROCESSES

The message routing submodel contains four Processes. Details of these
Processes do not have to be known by the user if the submodel can be used as
is. However, if the user needs to make changes, knowledge of how the
processes work is essential. This subsection describes the functioning of
these Processes.

PROCESS MRS

This is the top-level Process of the message routing submodel and is called
when a user wishes to make use of the subnodel. It causes a request message
to be generated. Following is a list of the parameters of this Process.

PROCESS NAME: MRS -- Generate a request message and pass it to
NODEPROC.

LCATION: Executes in all nodes.

GIVEN: PROCESS (DATA TYPE: PROCESS) -- the name of the process to
be initiated in the destination node.

'p PRIORITY (DATA TYPE: REAL) -- the priority of the
destination process.

MSG TYPE (DATA TYPE: ALPHA) -- the type of message to be
created. The only legal values for this parameter are:
$REQNORE -- a request message is created which requires no
response, $REQRESP -- a request message is created which will
request a response at its destination, $RESP -- used only if
no process is to be initiated in the destination node and no
response is required.

MSGLrH (DATA TYPE: REAL) -- the message length.

D-3

S" " " ' ' , " - " " " " " . " " " . -

TO NODE (DATA TYPE: RESOURCE) -- the message destination

node.

MSG (DATA TYPE: ITEM) -- the name of the message item to be
created.

RETURN: None

CALLS: NODEPROC

The Process begins by creating a message and initializing various attributes
of it. The attributes CNODE and FNOD] are initialized to the current node in
which the Process is executing. The attribute RP1RC is set to the Process
that will be triggered at the message destination node. Process will execute.
The attribute TYPE is set to the parameter passed in MSG TYPE. The attribute
length is set to the length of the message. The destination node is stored in
the TNODE attribute. Process MRS then calls Process NODEPROC with a WAIT
option and gives it the newly created message. Figure D-1 is a listing of
this Process.

PROCESS

MNEMONIC DESCRIPTION

MRS GENERATE A PROCESS REQUEST MESSAGE AND INITIATE I/0

ENTRY OPCODE PARM PARM PARM COMMENT

START ALL NO

GIVEN PROCESS PRIORITY A4SC TYPE
MSG LNTH TONODE MSG

CREATE MSG- CREATE MESSAGE 2.

ASSIGN MSG LNTH SET MESSAGE LENGTH
VSG LENGTH

ASSIGN PROCESS SET PROCESS a',

MSG RPROC
ASSIGN PRIORITY SET PRIORITY

MSG RPROCPRI
ASSIGN TO NODE SET DESTINATION

MS TNODE
ASSIGN MSG TYPE SET MESSAGE TYPE

MSG- TYPE
CALL NODEPROC WAIT 0 EXECUTIVE SERVICING OF VSG

GIVEN MSG
E NO

LOCAL VARIABLES OF PROCESS MRS

I PROCESS (y) 2 PRIORITY 3 MSG TYPE 4 MSG LNTH
S TO NODE 6 MSG (1) 7 NODFPROC (P)

Figure D-1. Listing of Process MRS

a.

a.

P%

2a.4

Process NODEPROC

This Process performs nodal processing and determines whether the message is
at its destination. Mien the Process is called, it is given the message Item.
The following describes the parameters of the Process. i

PROCESS NAME: NODEPROC - Nodal Processing

LOCATION: Executes in all nodes.

GIVEN: MSG (DATA TYPE: ITEM) -- This parameter is the name
of the message item created in process MRS.

RETURN: None

CALLS: CHANPROC, DESTPROC

The first step of this Process is to assign the name of the current node to a
system variable. The processing delay is then calculated and charged against

N the current node.

The message's current position is compared with its destination. If the

message is at its destination, the Process determines whether the message is a
request or response message. If it is a request message, the Process DESTPROC
is called with a i&IT option and a priority equal to the requested priority.
The requested Process is initiated in the destination node by the Process
DESTPROC. If the message is a response message, the Process DESTPROC is
called to destroy the message. If the message is not at its destination node,
the Process CHANPROC is called to forward the message to its next node.
Figure D-2 is a listing of this Process.

D-5

,A

.. S.

e.

r o

1%¢,

S.:

'

PROCESS
MNEMONIC DESCRIPTION

NODEPROC NODAL PROCESSING AND ROUTING

ENTRY OPCODE PARM PARM PARM COMMENT

START ALL NO
GIVEN MSG

ASSIGN MSG CNODE INDICATE CURRENT NODE

C NODE

ASSIGN C-NODE MROUTE PROCESSING RATE OF NODE

RT OVHD

ASSIGN MSZ LENGTH GET MESSAGE LENGTH

MSG LNTH
EVAL OVERHEAD COMPUTE PROCESSING DELAY

MSG LNTH*RT OVHD

ALLOC C NDDE I ALL ALLOCATE CURRENT NODE

S1RIORTY

ROUTE OH CONSTANT OVERHEAD DELAY FOR ROUTING

MSECONDS RESUME

DEALLOC C NODE I RELEASE C NODE TO OTHERS

COMPARE MSG CNODE EQ IS MSG AT-DESTINATION?

MSG TNODE CONTROL

*CALL CHANPROC WAIT 0 FORWARD MSG TO CHANNEL
GIVEN MSG
BRANCH END 10D

CONTROL ENTRY MESSAGE AT DESTINATION
CALL DESTPROC WAIT 0 CONTEXT SWITCH MESSAGE

GIVEN MSG

END ENTRY
FND

LOCAL VARIABLES OF PROCESS NODEPROC

SMSG (1) 2 C NODE 3 RT OVHD 4 MSG LNTH

OVERHEAD 8 ROUTEOH (A) 7 CHXNPROC (P) 8 DESTPROC (P) -l

Figure D-2. [isting of Process NODEPROC

a''

[>-

_ -

a.%'
U%

a.%

D-6 I-

U'.

Process DESTPROC

This Process models the processing of a message at its destination. It
terminates request messages, generates response messages and triggers the
requested Process. The following describes the parameters of this Process.

PROCESS NAME: DESTPROC -- Destination processing of message items.

LOCATION: Executes in all nodes.

GIVEN: MSG (DATA TYPE: ITEM) - This parameter is the message
item created in process MRS.

RETURNS: None

CALLS: CHANPROC

This Process determines whether the message is a request or response message.
If it is a response message, this Process destroys the message and terminates.
If the message is a request message, the name of the requested Process is
retrieved from the RPROC attribute of the message, and the process is
initiated. DESTPROC waits until the requested process copletes. Next,
DESTPROC checks the message attribute TYPE to see whether the requesting
Process is waiting for a response. If no response is desired, the message is
destroyed and DESTPROC terminates. If a response is requested, the message
type is changed to response, the destination node is changed to the origin,
and the origin is changed to the current node. Then the Process CHANPROC is
called to route the message back to its origin. Figure D-3 is a listing of
this Process.

,.D-

-p

4X.

S..%°

N-W ":

" D-7

* * . , y0- ZV7&I,& v - . - **lpc -

PROCESS
MNEMONIC DESCRIPTION

DESTPROC PROCESSING AT DESTINATION OF MESSAGE

ENTRY OPCODE PARM PARM PARM COMMENT

START ALL NO
GIVEN MSG
ASSIGN MSG CNODE CURRENT NODE

C NODE
COMPARE MSG TYPE EQ IF RESPONSE, DESTROY

SRESP DESTROY

ALLOC C NODE 1 ALL ALLOCATE CURRENT NODE
SPRIORTY

ASSIGN MSG RPROC EXECUTE THE CALLED PROCESS
PROCESS

ASSIGN MSG RPROCPRI SET PRIORITY FOR REQ PROC
PRIORITY

CALL PROCESS WAIT PRIORITY WAIT UNTIL COMPLETE
GIVEN MSG
RETURN MSG
DEALLOC C NODE I DEALLOCATE CURRENT NODE
COMPARE MSG TYPE EQ NO RESPONSE REQ -> DESTROY

$REQNORE DESTROY ',

ASSIGN SRESP CHANGE MSG RESPONSE TYPE
MSG TYPE

ASSIGN MSG FNODE SWITCH FROM AND TO NODES
VSG TNODE

ASSIGN MSG CNODE CURRENT NODE IS FROM NOrc-
MSG FNODE

CALL CHANPROC WAIT 0 RETURN MESSAGE TO ORIGIN
GIVEN MSG
BRANCH END 100 %

DESTROY ENTRY TERMINATE MESSAGE AT DEST

DESTROY MSG TERMINATE MSG
END ENTRY

END

LOCAL VARIABLES OF PROCESS DESTPROC

I MSG (I) 2 CNODE 3 PROCESS X) PRIORITY
5 CHANPROC (P)

Figure D-3. Listing of Process DESTPROC

D--

S.

S.,

'S"

*-7] ---.

Process CHANPROC

Process CHANPROC extracts the current node and the destination node fram the
message Item. It accesses the LPT to determine the next node and the
connecting channel. The channel is allocated to simulate its use, and the
Process NODEPROC is called. The following describes the parameters of process
CHANPROC.

PROCESS NAME: CHANPROC -- full and half duplex channel logic

LOCATION: Executes in all nodes

GIVEN: MSG (DATA TYPE: ITEM) - This parameter is the

message item created in MRS.

RETURN: None

CALLS: NODEPROC

The first step of this Process is to assign the current node to the system
variable $CNODE and to determine the destination node for the message. Then
the next node and next channel are extracted from the LPT, and the channel is
allocated. The transfer time for the message is assumed to be a constant
rate. The action XFER.OH simulates the time used to traverse the channel.
The value of the current-node attribute of the message is changed to the next
node to update the message's position, and the system current node indicator
($CNODE) is also set to the next node. The channel is then deallocated and
the Process NODEPROC is called. Figure D-4 is a listing of this PROCESS.

'-

V...
el

D-9

I.I

PROCESS
MNEMONIC DESCRIPTION

CHANPROC FULL AND HALF DUPLEX CHANNEL LOGIC I
ENTRY OPCODE PARM PARM PARM COMMENT

START ALL NO
GIVEN MSG
ASSIGN MSG CNODE SET INTERNAL NODE CURRENT

CNODE
ASSIGN MSG TNODE GET DESTINATION NODE

TO NODE

ASSIGN SNFTNODE TO NODE SET NEXT NODE TO DESTN
NXT NODE

ASSIGN SCHTNNEL TONODE GET CHANNEL TO NEXT NODE
CHANNEL --

ALLOC CHANNEL I ALL OBTAIN CHANNEL FOR XFER
3PRIORTY

ASSIGN CHANNEL RATE WHAT IS CHANNEL RATE?
VSPEED

ASSIGN MSG LENGTH MESSAGE LENGTH
VLENGTH ..

EVAL VM OVHD CALCULATE TRANSFER TIME 0
VSPEEDVLENGTH

XFEROH CONSTANT VM OVHD DELAY DUE TO TRANSFER TIME
-SECONDS RESUME

ASSIGN NXT NODE MSG RESIDES IN NEXT NODE 4

MSG CNODE
ASSIGN NXT NODE SET INTERNAL NODE REGISTER

lCNDE

DEALLOC CHANNEL 1 FREE UP CHANNEL AFTER XFER

CALL NODEPROC WAIT 0 ROUTE MESSAGE TO NEXT NODE

GIVEN MSG
END

LOCAL VARIABLES OF PROCESS CHANPROC

1 MSG (I) 2 TO NODE 3 NXT NODE 4 CHANNEL
5 VSPEED 8 VLENGTH 7 VM CVHD 8 XFEROH (A)

9 NODEPROC (P)

Figure D-4. Listing of Process CHAN'PROC

.-

D.-

L....

~... ~'.

0

0

v~.
0

~0
~-- Ii,.'I ~.% 4*'* ~

*

~ p

0
*J .J.

-4.-I

I - ~ * - .~ ' I' ~. *%.% V I~ * *%f,/~. %.'~% .* V%'.fVIf V ~' ~

